| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 7434 |
. . . . . . . . . 10
⊢ (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘〈𝑗, 𝑘〉) |
| 2 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 3 | | simplrr 778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑂) |
| 4 | | opelxpi 5722 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
| 6 | | mamuvs2.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | | mamuvs2.o |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 ∈ Fin) |
| 8 | | xpfi 9358 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin) |
| 9 | 6, 7, 8 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 × 𝑂) ∈ Fin) |
| 10 | 9 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑁 × 𝑂) ∈ Fin) |
| 11 | | mamuvs2.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 12 | 11 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
| 13 | | mamuvs2.z |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
| 14 | | elmapi 8889 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 15 | | ffn 6736 |
. . . . . . . . . . . . . 14
⊢ (𝑍:(𝑁 × 𝑂)⟶𝐵 → 𝑍 Fn (𝑁 × 𝑂)) |
| 16 | 13, 14, 15 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 Fn (𝑁 × 𝑂)) |
| 17 | 16 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍 Fn (𝑁 × 𝑂)) |
| 18 | | df-ov 7434 |
. . . . . . . . . . . . . 14
⊢ (𝑗𝑍𝑘) = (𝑍‘〈𝑗, 𝑘〉) |
| 19 | 18 | eqcomi 2746 |
. . . . . . . . . . . . 13
⊢ (𝑍‘〈𝑗, 𝑘〉) = (𝑗𝑍𝑘) |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) → (𝑍‘〈𝑗, 𝑘〉) = (𝑗𝑍𝑘)) |
| 21 | 10, 12, 17, 20 | ofc1 7725 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘〈𝑗, 𝑘〉) = (𝑌 · (𝑗𝑍𝑘))) |
| 22 | 5, 21 | mpdan 687 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘〈𝑗, 𝑘〉) = (𝑌 · (𝑗𝑍𝑘))) |
| 23 | 1, 22 | eqtrid 2789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = (𝑌 · (𝑗𝑍𝑘))) |
| 24 | 23 | oveq2d 7447 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘)))) |
| 25 | | mamuvs2.r |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 26 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 27 | 26 | crngmgp 20238 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
| 28 | 25, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (mulGrp‘𝑅) ∈ CMnd) |
| 30 | | mamuvs2.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| 31 | | elmapi 8889 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 33 | 32 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 34 | | simplrl 777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
| 35 | 33, 34, 2 | fovcdmd 7605 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
| 36 | 13, 14 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 38 | 37, 2, 3 | fovcdmd 7605 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑍𝑘) ∈ 𝐵) |
| 39 | | mamuvs2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 40 | 26, 39 | mgpbas 20142 |
. . . . . . . . . 10
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
| 41 | | mamuvs2.t |
. . . . . . . . . . 11
⊢ · =
(.r‘𝑅) |
| 42 | 26, 41 | mgpplusg 20141 |
. . . . . . . . . 10
⊢ · =
(+g‘(mulGrp‘𝑅)) |
| 43 | 40, 42 | cmn12 19820 |
. . . . . . . . 9
⊢
(((mulGrp‘𝑅)
∈ CMnd ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))) |
| 44 | 29, 35, 12, 38, 43 | syl13anc 1374 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))) |
| 45 | 24, 44 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))) |
| 46 | 45 | mpteq2dva 5242 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘))) = (𝑗 ∈ 𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
| 47 | 46 | oveq2d 7447 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
| 48 | | eqid 2737 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 49 | | crngring 20242 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 50 | 25, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 51 | 50 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ Ring) |
| 52 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑁 ∈ Fin) |
| 53 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑌 ∈ 𝐵) |
| 54 | 50 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 55 | 39, 41, 54, 35, 38 | ringcld 20257 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵) |
| 56 | | eqid 2737 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) |
| 57 | | ovexd 7466 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ V) |
| 58 | | fvexd 6921 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (0g‘𝑅) ∈ V) |
| 59 | 56, 52, 57, 58 | fsuppmptdm 9416 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) finSupp (0g‘𝑅)) |
| 60 | 39, 48, 41, 51, 52, 53, 55, 59 | gsummulc2 20314 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
| 61 | 47, 60 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
| 62 | | mamuvs2.f |
. . . . 5
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) |
| 63 | 25 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ CRing) |
| 64 | | mamuvs2.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
| 65 | 64 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑀 ∈ Fin) |
| 66 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑂 ∈ Fin) |
| 67 | 30 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| 68 | | fconst6g 6797 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝐵 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵) |
| 69 | 11, 68 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵) |
| 70 | 39 | fvexi 6920 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
| 71 | | elmapg 8879 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ (𝑁 × 𝑂) ∈ Fin) → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)) |
| 72 | 70, 9, 71 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)) |
| 73 | 69, 72 | mpbird 257 |
. . . . . . 7
⊢ (𝜑 → ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
| 74 | 39, 41 | ringvcl 22404 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
| 75 | 50, 73, 13, 74 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
| 76 | 75 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
| 77 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑖 ∈ 𝑀) |
| 78 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑘 ∈ 𝑂) |
| 79 | 62, 39, 41, 63, 65, 52, 66, 67, 76, 77, 78 | mamufv 22398 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘))))) |
| 80 | | df-ov 7434 |
. . . . 5
⊢ (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) |
| 81 | | opelxpi 5722 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
| 82 | 81 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
| 83 | | xpfi 9358 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin) |
| 84 | 64, 7, 83 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 × 𝑂) ∈ Fin) |
| 85 | 84 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑀 × 𝑂) ∈ Fin) |
| 86 | 39, 50, 62, 64, 6, 7, 30, 13 | mamucl 22405 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
| 87 | | elmapi 8889 |
. . . . . . . . 9
⊢ ((𝑋𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
| 88 | | ffn 6736 |
. . . . . . . . 9
⊢ ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 89 | 86, 87, 88 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 90 | 89 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 91 | | df-ov 7434 |
. . . . . . . . 9
⊢ (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) |
| 92 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
| 93 | 62, 39, 41, 63, 65, 52, 66, 67, 92, 77, 78 | mamufv 22398 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
| 94 | 91, 93 | eqtr3id 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
| 95 | 94 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) |
| 96 | 85, 53, 90, 95 | ofc1 7725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
| 97 | 82, 96 | mpdan 687 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
| 98 | 80, 97 | eqtrid 2789 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = (𝑌 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))) |
| 99 | 61, 79, 98 | 3eqtr4d 2787 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)) |
| 100 | 99 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)) |
| 101 | 39, 50, 62, 64, 6, 7, 30, 75 | mamucl 22405 |
. . . 4
⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
| 102 | | elmapi 8889 |
. . . 4
⊢ ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵) |
| 103 | | ffn 6736 |
. . . 4
⊢ ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂)) |
| 104 | 101, 102,
103 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂)) |
| 105 | | fconst6g 6797 |
. . . . . . 7
⊢ (𝑌 ∈ 𝐵 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵) |
| 106 | 11, 105 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵) |
| 107 | | elmapg 8879 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)) |
| 108 | 70, 84, 107 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)) |
| 109 | 106, 108 | mpbird 257 |
. . . . 5
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
| 110 | 39, 41 | ringvcl 22404 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵 ↑m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
| 111 | 50, 109, 86, 110 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
| 112 | | elmapi 8889 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵) |
| 113 | | ffn 6736 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
| 114 | 111, 112,
113 | 3syl 18 |
. . 3
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
| 115 | | eqfnov2 7563 |
. . 3
⊢ (((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))) |
| 116 | 104, 114,
115 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))) |
| 117 | 100, 116 | mpbird 257 |
1
⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))) |