MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs2 Structured version   Visualization version   GIF version

Theorem mamuvs2 22431
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamuvs2.r (𝜑𝑅 ∈ CRing)
mamuvs2.b 𝐵 = (Base‘𝑅)
mamuvs2.t · = (.r𝑅)
mamuvs2.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuvs2.m (𝜑𝑀 ∈ Fin)
mamuvs2.n (𝜑𝑁 ∈ Fin)
mamuvs2.o (𝜑𝑂 ∈ Fin)
mamuvs2.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuvs2.y (𝜑𝑌𝐵)
mamuvs2.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs2 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)))

Proof of Theorem mamuvs2
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7451 . . . . . . . . . 10 (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩)
2 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
3 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
4 opelxpi 5737 . . . . . . . . . . . 12 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
52, 3, 4syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
6 mamuvs2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ Fin)
7 mamuvs2.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
8 xpfi 9386 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
96, 7, 8syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
109ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
11 mamuvs2.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
1211ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌𝐵)
13 mamuvs2.z . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
14 elmapi 8907 . . . . . . . . . . . . . 14 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
15 ffn 6747 . . . . . . . . . . . . . 14 (𝑍:(𝑁 × 𝑂)⟶𝐵𝑍 Fn (𝑁 × 𝑂))
1613, 14, 153syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 Fn (𝑁 × 𝑂))
1716ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
18 df-ov 7451 . . . . . . . . . . . . . 14 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
1918eqcomi 2749 . . . . . . . . . . . . 13 (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘)
2019a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘))
2110, 12, 17, 20ofc1 7741 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
225, 21mpdan 686 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
231, 22eqtrid 2792 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = (𝑌 · (𝑗𝑍𝑘)))
2423oveq2d 7464 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))))
25 mamuvs2.r . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
26 eqid 2740 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2726crngmgp 20268 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
2825, 27syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2928ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (mulGrp‘𝑅) ∈ CMnd)
30 mamuvs2.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
31 elmapi 8907 . . . . . . . . . . . 12 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3332ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
34 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
3533, 34, 2fovcdmd 7622 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
3613, 14syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
3736ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3837, 2, 3fovcdmd 7622 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
39 mamuvs2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
4026, 39mgpbas 20167 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
41 mamuvs2.t . . . . . . . . . . 11 · = (.r𝑅)
4226, 41mgpplusg 20165 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
4340, 42cmn12 19844 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ CMnd ∧ ((𝑖𝑋𝑗) ∈ 𝐵𝑌𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4429, 35, 12, 38, 43syl13anc 1372 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4524, 44eqtrd 2780 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4645mpteq2dva 5266 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘))) = (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
4746oveq2d 7464 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
48 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
49 crngring 20272 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5025, 49syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5150adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
526adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
5311adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌𝐵)
5450ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
5539, 41, 54, 35, 38ringcld 20286 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
56 eqid 2740 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))
57 ovexd 7483 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ V)
58 fvexd 6935 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
5956, 52, 57, 58fsuppmptdm 9445 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
6039, 48, 41, 51, 52, 53, 55, 59gsummulc2 20340 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
6147, 60eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
62 mamuvs2.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
6325adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CRing)
64 mamuvs2.m . . . . . 6 (𝜑𝑀 ∈ Fin)
6564adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
667adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6730adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
68 fconst6g 6810 . . . . . . . . 9 (𝑌𝐵 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
6911, 68syl 17 . . . . . . . 8 (𝜑 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
7039fvexi 6934 . . . . . . . . 9 𝐵 ∈ V
71 elmapg 8897 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑁 × 𝑂) ∈ Fin) → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7270, 9, 71sylancr 586 . . . . . . . 8 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7369, 72mpbird 257 . . . . . . 7 (𝜑 → ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)))
7439, 41ringvcl 22425 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵m (𝑁 × 𝑂))) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
7550, 73, 13, 74syl3anc 1371 . . . . . 6 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
7675adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
77 simprl 770 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
78 simprr 772 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7962, 39, 41, 63, 65, 52, 66, 67, 76, 77, 78mamufv 22419 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))))
80 df-ov 7451 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
81 opelxpi 5737 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
8281adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
83 xpfi 9386 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
8464, 7, 83syl2anc 583 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
8584adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
8639, 50, 62, 64, 6, 7, 30, 13mamucl 22426 . . . . . . . . 9 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
87 elmapi 8907 . . . . . . . . 9 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
88 ffn 6747 . . . . . . . . 9 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
8986, 87, 883syl 18 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9089adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
91 df-ov 7451 . . . . . . . . 9 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
9213adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
9362, 39, 41, 63, 65, 52, 66, 67, 92, 77, 78mamufv 22419 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9491, 93eqtr3id 2794 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9594adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9685, 53, 90, 95ofc1 7741 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
9782, 96mpdan 686 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
9880, 97eqtrid 2792 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
9961, 79, 983eqtr4d 2790 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))
10099ralrimivva 3208 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))
10139, 50, 62, 64, 6, 7, 30, 75mamucl 22426 . . . 4 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
102 elmapi 8907 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵)
103 ffn 6747 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂))
104101, 102, 1033syl 18 . . 3 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂))
105 fconst6g 6810 . . . . . . 7 (𝑌𝐵 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
10611, 105syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
107 elmapg 8897 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
10870, 84, 107sylancr 586 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
109106, 108mpbird 257 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)))
11039, 41ringvcl 22425 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11150, 109, 86, 110syl3anc 1371 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
112 elmapi 8907 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
113 ffn 6747 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
114111, 112, 1133syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
115 eqfnov2 7580 . . 3 (((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)))
116104, 114, 115syl2anc 583 . 2 (𝜑 → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)))
117100, 116mpbird 257 1 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {csn 4648  cop 4654  cotp 4656  cmpt 5249   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261   maMul cmmul 22415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-mamu 22416
This theorem is referenced by:  matassa  22471
  Copyright terms: Public domain W3C validator