MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs2 Structured version   Visualization version   GIF version

Theorem mamuvs2 21553
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamuvs2.r (𝜑𝑅 ∈ CRing)
mamuvs2.b 𝐵 = (Base‘𝑅)
mamuvs2.t · = (.r𝑅)
mamuvs2.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuvs2.m (𝜑𝑀 ∈ Fin)
mamuvs2.n (𝜑𝑁 ∈ Fin)
mamuvs2.o (𝜑𝑂 ∈ Fin)
mamuvs2.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuvs2.y (𝜑𝑌𝐵)
mamuvs2.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs2 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)))

Proof of Theorem mamuvs2
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7278 . . . . . . . . . 10 (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩)
2 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
3 simplrr 775 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
4 opelxpi 5626 . . . . . . . . . . . 12 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
52, 3, 4syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
6 mamuvs2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ Fin)
7 mamuvs2.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
8 xpfi 9085 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
96, 7, 8syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
109ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
11 mamuvs2.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
1211ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌𝐵)
13 mamuvs2.z . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
14 elmapi 8637 . . . . . . . . . . . . . 14 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
15 ffn 6600 . . . . . . . . . . . . . 14 (𝑍:(𝑁 × 𝑂)⟶𝐵𝑍 Fn (𝑁 × 𝑂))
1613, 14, 153syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 Fn (𝑁 × 𝑂))
1716ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
18 df-ov 7278 . . . . . . . . . . . . . 14 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
1918eqcomi 2747 . . . . . . . . . . . . 13 (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘)
2019a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘))
2110, 12, 17, 20ofc1 7559 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
225, 21mpdan 684 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
231, 22eqtrid 2790 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = (𝑌 · (𝑗𝑍𝑘)))
2423oveq2d 7291 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))))
25 mamuvs2.r . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
26 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2726crngmgp 19791 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
2825, 27syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2928ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (mulGrp‘𝑅) ∈ CMnd)
30 mamuvs2.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
31 elmapi 8637 . . . . . . . . . . . 12 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3332ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
34 simplrl 774 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
3533, 34, 2fovrnd 7444 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
3613, 14syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
3736ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3837, 2, 3fovrnd 7444 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
39 mamuvs2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
4026, 39mgpbas 19726 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
41 mamuvs2.t . . . . . . . . . . 11 · = (.r𝑅)
4226, 41mgpplusg 19724 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
4340, 42cmn12 19407 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ CMnd ∧ ((𝑖𝑋𝑗) ∈ 𝐵𝑌𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4429, 35, 12, 38, 43syl13anc 1371 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4524, 44eqtrd 2778 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4645mpteq2dva 5174 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘))) = (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
4746oveq2d 7291 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
48 eqid 2738 . . . . . 6 (0g𝑅) = (0g𝑅)
49 eqid 2738 . . . . . 6 (+g𝑅) = (+g𝑅)
50 crngring 19795 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5125, 50syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5251adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
536adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
5411adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌𝐵)
5551ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
5639, 41ringcl 19800 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
5755, 35, 38, 56syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
58 eqid 2738 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))
59 ovexd 7310 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ V)
60 fvexd 6789 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
6158, 53, 59, 60fsuppmptdm 9139 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
6239, 48, 49, 41, 52, 53, 54, 57, 61gsummulc2 19846 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
6347, 62eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
64 mamuvs2.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
6525adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CRing)
66 mamuvs2.m . . . . . 6 (𝜑𝑀 ∈ Fin)
6766adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
687adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6930adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
70 fconst6g 6663 . . . . . . . . 9 (𝑌𝐵 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
7111, 70syl 17 . . . . . . . 8 (𝜑 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
7239fvexi 6788 . . . . . . . . 9 𝐵 ∈ V
73 elmapg 8628 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑁 × 𝑂) ∈ Fin) → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7472, 9, 73sylancr 587 . . . . . . . 8 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7571, 74mpbird 256 . . . . . . 7 (𝜑 → ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)))
7639, 41ringvcl 21547 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵m (𝑁 × 𝑂))) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
7751, 75, 13, 76syl3anc 1370 . . . . . 6 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
7877adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
79 simprl 768 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
80 simprr 770 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
8164, 39, 41, 65, 67, 53, 68, 69, 78, 79, 80mamufv 21536 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))))
82 df-ov 7278 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
83 opelxpi 5626 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
8483adantl 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
85 xpfi 9085 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
8666, 7, 85syl2anc 584 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
8786adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
8839, 51, 64, 66, 6, 7, 30, 13mamucl 21548 . . . . . . . . 9 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
89 elmapi 8637 . . . . . . . . 9 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
90 ffn 6600 . . . . . . . . 9 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9188, 89, 903syl 18 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9291adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
93 df-ov 7278 . . . . . . . . 9 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
9413adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
9564, 39, 41, 65, 67, 53, 68, 69, 94, 79, 80mamufv 21536 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9693, 95eqtr3id 2792 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9796adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9887, 54, 92, 97ofc1 7559 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
9984, 98mpdan 684 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
10082, 99eqtrid 2790 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
10163, 81, 1003eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))
102101ralrimivva 3123 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))
10339, 51, 64, 66, 6, 7, 30, 77mamucl 21548 . . . 4 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
104 elmapi 8637 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵)
105 ffn 6600 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂))
106103, 104, 1053syl 18 . . 3 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂))
107 fconst6g 6663 . . . . . . 7 (𝑌𝐵 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
10811, 107syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
109 elmapg 8628 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
11072, 86, 109sylancr 587 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
111108, 110mpbird 256 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)))
11239, 41ringvcl 21547 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11351, 111, 88, 112syl3anc 1370 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
114 elmapi 8637 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
115 ffn 6600 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
116113, 114, 1153syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
117 eqfnov2 7404 . . 3 (((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)))
118106, 116, 117syl2anc 584 . 2 (𝜑 → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)))
119102, 118mpbird 256 1 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  {csn 4561  cop 4567  cotp 4569  cmpt 5157   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  Fincfn 8733  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784   maMul cmmul 21532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-mamu 21533
This theorem is referenced by:  matassa  21593
  Copyright terms: Public domain W3C validator