MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs2 Structured version   Visualization version   GIF version

Theorem mamuvs2 21257
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamuvs2.r (𝜑𝑅 ∈ CRing)
mamuvs2.b 𝐵 = (Base‘𝑅)
mamuvs2.t · = (.r𝑅)
mamuvs2.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuvs2.m (𝜑𝑀 ∈ Fin)
mamuvs2.n (𝜑𝑁 ∈ Fin)
mamuvs2.o (𝜑𝑂 ∈ Fin)
mamuvs2.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuvs2.y (𝜑𝑌𝐵)
mamuvs2.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs2 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)))

Proof of Theorem mamuvs2
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7194 . . . . . . . . . 10 (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩)
2 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
3 simplrr 778 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
4 opelxpi 5573 . . . . . . . . . . . 12 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
52, 3, 4syl2anc 587 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
6 mamuvs2.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ Fin)
7 mamuvs2.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
8 xpfi 8920 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
96, 7, 8syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
109ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
11 mamuvs2.y . . . . . . . . . . . . 13 (𝜑𝑌𝐵)
1211ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌𝐵)
13 mamuvs2.z . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
14 elmapi 8508 . . . . . . . . . . . . . 14 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
15 ffn 6523 . . . . . . . . . . . . . 14 (𝑍:(𝑁 × 𝑂)⟶𝐵𝑍 Fn (𝑁 × 𝑂))
1613, 14, 153syl 18 . . . . . . . . . . . . 13 (𝜑𝑍 Fn (𝑁 × 𝑂))
1716ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
18 df-ov 7194 . . . . . . . . . . . . . 14 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
1918eqcomi 2745 . . . . . . . . . . . . 13 (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘)
2019a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → (𝑍‘⟨𝑗, 𝑘⟩) = (𝑗𝑍𝑘))
2110, 12, 17, 20ofc1 7472 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂)) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
225, 21mpdan 687 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)‘⟨𝑗, 𝑘⟩) = (𝑌 · (𝑗𝑍𝑘)))
231, 22syl5eq 2783 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘) = (𝑌 · (𝑗𝑍𝑘)))
2423oveq2d 7207 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))))
25 mamuvs2.r . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
26 eqid 2736 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2726crngmgp 19524 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
2825, 27syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2928ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (mulGrp‘𝑅) ∈ CMnd)
30 mamuvs2.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
31 elmapi 8508 . . . . . . . . . . . 12 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3230, 31syl 17 . . . . . . . . . . 11 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3332ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
34 simplrl 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
3533, 34, 2fovrnd 7358 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
3613, 14syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
3736ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3837, 2, 3fovrnd 7358 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
39 mamuvs2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
4026, 39mgpbas 19464 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
41 mamuvs2.t . . . . . . . . . . 11 · = (.r𝑅)
4226, 41mgpplusg 19462 . . . . . . . . . 10 · = (+g‘(mulGrp‘𝑅))
4340, 42cmn12 19145 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ CMnd ∧ ((𝑖𝑋𝑗) ∈ 𝐵𝑌𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4429, 35, 12, 38, 43syl13anc 1374 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑌 · (𝑗𝑍𝑘))) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4524, 44eqtrd 2771 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)) = (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))
4645mpteq2dva 5135 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘))) = (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
4746oveq2d 7207 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
48 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
49 eqid 2736 . . . . . 6 (+g𝑅) = (+g𝑅)
50 crngring 19528 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5125, 50syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5251adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
536adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
5411adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌𝐵)
5551ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
5639, 41ringcl 19533 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
5755, 35, 38, 56syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
58 eqid 2736 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))
59 ovexd 7226 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)) ∈ V)
60 fvexd 6710 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
6158, 53, 59, 60fsuppmptdm 8974 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
6239, 48, 49, 41, 52, 53, 54, 57, 61gsummulc2 19579 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑌 · ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
6347, 62eqtrd 2771 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
64 mamuvs2.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
6525adantr 484 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CRing)
66 mamuvs2.m . . . . . 6 (𝜑𝑀 ∈ Fin)
6766adantr 484 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
687adantr 484 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6930adantr 484 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
70 fconst6g 6586 . . . . . . . . 9 (𝑌𝐵 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
7111, 70syl 17 . . . . . . . 8 (𝜑 → ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵)
7239fvexi 6709 . . . . . . . . 9 𝐵 ∈ V
73 elmapg 8499 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑁 × 𝑂) ∈ Fin) → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7472, 9, 73sylancr 590 . . . . . . . 8 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ↔ ((𝑁 × 𝑂) × {𝑌}):(𝑁 × 𝑂)⟶𝐵))
7571, 74mpbird 260 . . . . . . 7 (𝜑 → ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)))
7639, 41ringvcl 21251 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑁 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵m (𝑁 × 𝑂))) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
7751, 75, 13, 76syl3anc 1373 . . . . . 6 (𝜑 → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
7877adantr 484 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
79 simprl 771 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
80 simprr 773 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
8164, 39, 41, 65, 67, 53, 68, 69, 78, 79, 80mamufv 21240 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)𝑘)))))
82 df-ov 7194 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
83 opelxpi 5573 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
8483adantl 485 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
85 xpfi 8920 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
8666, 7, 85syl2anc 587 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
8786adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
8839, 51, 64, 66, 6, 7, 30, 13mamucl 21252 . . . . . . . . 9 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
89 elmapi 8508 . . . . . . . . 9 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
90 ffn 6523 . . . . . . . . 9 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9188, 89, 903syl 18 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9291adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
93 df-ov 7194 . . . . . . . . 9 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
9413adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
9564, 39, 41, 65, 67, 53, 68, 69, 94, 79, 80mamufv 21240 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9693, 95eqtr3id 2785 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9796adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘)))))
9887, 54, 92, 97ofc1 7472 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
9984, 98mpdan 687 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
10082, 99syl5eq 2783 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘) = (𝑌 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑍𝑘))))))
10163, 81, 1003eqtr4d 2781 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))
102101ralrimivva 3102 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘))
10339, 51, 64, 66, 6, 7, 30, 77mamucl 21252 . . . 4 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
104 elmapi 8508 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵)
105 ffn 6523 . . . 4 ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂))
106103, 104, 1053syl 18 . . 3 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂))
107 fconst6g 6586 . . . . . . 7 (𝑌𝐵 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
10811, 107syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵)
109 elmapg 8499 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
11072, 86, 109sylancr 590 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑌}):(𝑀 × 𝑂)⟶𝐵))
111108, 110mpbird 260 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)))
11239, 41ringvcl 21251 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑌}) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11351, 111, 88, 112syl3anc 1373 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
114 elmapi 8508 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
115 ffn 6523 . . . 4 ((((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
116113, 114, 1153syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
117 eqfnov2 7318 . . 3 (((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)))
118106, 116, 117syl2anc 587 . 2 (𝜑 → ((𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍))𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))𝑘)))
119102, 118mpbird 260 1 (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  {csn 4527  cop 4533  cotp 4535  cmpt 5120   × cxp 5534   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  f cof 7445  m cmap 8486  Fincfn 8604  Basecbs 16666  +gcplusg 16749  .rcmulr 16750  0gc0g 16898   Σg cgsu 16899  CMndccmn 19124  mulGrpcmgp 19458  Ringcrg 19516  CRingccrg 19517   maMul cmmul 21236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-seq 13540  df-hash 13862  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-0g 16900  df-gsum 16901  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-ghm 18574  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-mamu 21237
This theorem is referenced by:  matassa  21295
  Copyright terms: Public domain W3C validator