Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: infsupprpr 9307 ressress 17003 plttr 18105 plelttr 18107 latledi 18240 latmlej11 18241 latmlej21 18243 latmlej22 18244 latjass 18246 latj12 18247 latj31 18250 latdisdlem 18259 ipopos 18299 imasmnd2 18467 imasmnd 18468 grpaddsubass 18710 grpsubsub4 18713 grpnpncan 18715 imasgrp2 18735 imasgrp 18736 frgp0 19411 cmn12 19452 abladdsub 19461 imasring 19903 dvrass 19977 lss1 20245 islmhm2 20345 zntoslem 20809 ipdir 20889 psrgrp 21212 psrlmod 21215 t1sep 22566 mettri2 23539 xmetrtri 23553 xmetrtri2 23554 pi1grplem 24257 dchrabl 26447 motgrp 26949 xmstrkgc 27298 ax5seglem4 27345 grpomuldivass 28948 ablomuldiv 28959 ablodivdiv4 28961 nvmdi 29055 dipdi 29250 dipsubdir 29255 dipsubdi 29256 cgr3tr4 34399 cgr3rflx 34401 seglemin 34460 linerflx1 34496 elicc3 34551 rngosubdi 36147 rngosubdir 36148 igenval2 36268 dmncan1 36278 latmassOLD 37285 omlfh1N 37314 omlfh3N 37315 cvrnbtwn 37327 cvrnbtwn2 37331 cvrnbtwn4 37335 hlatj12 37427 cvrntr 37481 islpln2a 37604 3atnelvolN 37642 elpadd2at2 37863 paddasslem17 37892 paddass 37894 paddssw2 37900 pmapjlln1 37911 ltrn2ateq 38236 cdlemc3 38249 cdleme1b 38282 cdleme3b 38285 cdleme3c 38286 cdleme9b 38308 erngdvlem3 39046 erngdvlem3-rN 39054 dvalveclem 39081 isdomn4 40214 mendlmod 41056 lincsumscmcl 45832 |
Copyright terms: Public domain | W3C validator |