| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: infsupprpr 9385 ressress 17153 plttr 18241 plelttr 18243 latledi 18378 latmlej11 18379 latmlej21 18381 latmlej22 18382 latjass 18384 latj12 18385 latj31 18388 latdisdlem 18397 ipopos 18437 imasmnd2 18677 imasmnd 18678 grpaddsubass 18938 grpsubsub4 18941 grpnpncan 18943 imasgrp2 18963 imasgrp 18964 frgp0 19667 cmn12 19709 abladdsub 19719 imasrng 20090 imasring 20243 dvrass 20321 isdomn4 20626 lss1 20866 islmhm2 20967 zntoslem 21488 ipdir 21571 psrgrpOLD 21889 psrlmod 21892 t1sep 23280 mettri2 24251 xmetrtri 24265 xmetrtri2 24266 pi1grplem 24971 dchrabl 27187 motgrp 28516 xmstrkgc 28859 ax5seglem4 28905 grpomuldivass 30513 ablomuldiv 30524 ablodivdiv4 30526 nvmdi 30620 dipdi 30815 dipsubdir 30820 dipsubdi 30821 cgr3tr4 36086 cgr3rflx 36088 seglemin 36147 linerflx1 36183 elicc3 36351 rngosubdi 37985 rngosubdir 37986 igenval2 38106 dmncan1 38116 latmassOLD 39268 omlfh1N 39297 omlfh3N 39298 cvrnbtwn 39310 cvrnbtwn2 39314 cvrnbtwn4 39318 hlatj12 39410 cvrntr 39464 islpln2a 39587 3atnelvolN 39625 elpadd2at2 39846 paddasslem17 39875 paddass 39877 paddssw2 39883 pmapjlln1 39894 ltrn2ateq 40219 cdlemc3 40232 cdleme1b 40265 cdleme3b 40268 cdleme3c 40269 cdleme9b 40291 erngdvlem3 41029 erngdvlem3-rN 41037 dvalveclem 41064 mendlmod 43222 lincsumscmcl 48465 |
| Copyright terms: Public domain | W3C validator |