![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1100 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1151 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: infsupprpr 8763 ressress 16418 plttr 17438 plelttr 17440 latledi 17557 latmlej11 17558 latmlej21 17560 latmlej22 17561 latjass 17563 latj12 17564 latj31 17567 ipopos 17628 latdisdlem 17657 imasmnd2 17795 imasmnd 17796 grpaddsubass 17976 grpsubsub4 17979 grpnpncan 17981 imasgrp2 18001 imasgrp 18002 frgp0 18646 cmn12 18686 abladdsub 18693 imasring 19092 dvrass 19163 lss1 19432 islmhm2 19532 psrgrp 19892 psrlmod 19895 zntoslem 20405 ipdir 20485 t1sep 21682 mettri2 22654 xmetrtri 22668 xmetrtri2 22669 pi1grplem 23356 dchrabl 25532 motgrp 26031 xmstrkgc 26375 ax5seglem4 26421 grpomuldivass 28095 ablomuldiv 28106 ablodivdiv4 28108 nvmdi 28202 dipdi 28397 dipsubdir 28402 dipsubdi 28403 cgr3tr4 33040 cgr3rflx 33042 seglemin 33101 linerflx1 33137 elicc3 33192 rngosubdi 34671 rngosubdir 34672 igenval2 34792 dmncan1 34802 latmassOLD 35816 omlfh1N 35845 omlfh3N 35846 cvrnbtwn 35858 cvrnbtwn2 35862 cvrnbtwn4 35866 hlatj12 35958 cvrntr 36012 islpln2a 36135 3atnelvolN 36173 elpadd2at2 36394 paddasslem17 36423 paddass 36425 paddssw2 36431 pmapjlln1 36442 ltrn2ateq 36767 cdlemc3 36780 cdleme1b 36813 cdleme3b 36816 cdleme3c 36817 cdleme9b 36839 erngdvlem3 37577 erngdvlem3-rN 37585 dvalveclem 37612 mendlmod 39195 lincsumscmcl 43861 |
Copyright terms: Public domain | W3C validator |