| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: infsupprpr 9523 ressress 17273 plttr 18357 plelttr 18359 latledi 18492 latmlej11 18493 latmlej21 18495 latmlej22 18496 latjass 18498 latj12 18499 latj31 18502 latdisdlem 18511 ipopos 18551 imasmnd2 18757 imasmnd 18758 grpaddsubass 19018 grpsubsub4 19021 grpnpncan 19023 imasgrp2 19043 imasgrp 19044 frgp0 19746 cmn12 19788 abladdsub 19798 imasrng 20142 imasring 20295 dvrass 20373 isdomn4 20681 lss1 20900 islmhm2 21001 zntoslem 21522 ipdir 21604 psrgrpOLD 21922 psrlmod 21925 t1sep 23313 mettri2 24285 xmetrtri 24299 xmetrtri2 24300 pi1grplem 25005 dchrabl 27222 motgrp 28527 xmstrkgc 28870 ax5seglem4 28916 grpomuldivass 30527 ablomuldiv 30538 ablodivdiv4 30540 nvmdi 30634 dipdi 30829 dipsubdir 30834 dipsubdi 30835 cgr3tr4 36075 cgr3rflx 36077 seglemin 36136 linerflx1 36172 elicc3 36340 rngosubdi 37974 rngosubdir 37975 igenval2 38095 dmncan1 38105 latmassOLD 39252 omlfh1N 39281 omlfh3N 39282 cvrnbtwn 39294 cvrnbtwn2 39298 cvrnbtwn4 39302 hlatj12 39394 cvrntr 39449 islpln2a 39572 3atnelvolN 39610 elpadd2at2 39831 paddasslem17 39860 paddass 39862 paddssw2 39868 pmapjlln1 39879 ltrn2ateq 40204 cdlemc3 40217 cdleme1b 40250 cdleme3b 40253 cdleme3c 40254 cdleme9b 40276 erngdvlem3 41014 erngdvlem3-rN 41022 dvalveclem 41049 mendlmod 43180 lincsumscmcl 48376 |
| Copyright terms: Public domain | W3C validator |