![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: infsupprpr 9573 ressress 17307 plttr 18412 plelttr 18414 latledi 18547 latmlej11 18548 latmlej21 18550 latmlej22 18551 latjass 18553 latj12 18554 latj31 18557 latdisdlem 18566 ipopos 18606 imasmnd2 18809 imasmnd 18810 grpaddsubass 19070 grpsubsub4 19073 grpnpncan 19075 imasgrp2 19095 imasgrp 19096 frgp0 19802 cmn12 19844 abladdsub 19854 imasrng 20204 imasring 20353 dvrass 20434 isdomn4 20738 lss1 20959 islmhm2 21060 zntoslem 21598 ipdir 21680 psrgrpOLD 22000 psrlmod 22003 t1sep 23399 mettri2 24372 xmetrtri 24386 xmetrtri2 24387 pi1grplem 25101 dchrabl 27316 motgrp 28569 xmstrkgc 28918 ax5seglem4 28965 grpomuldivass 30573 ablomuldiv 30584 ablodivdiv4 30586 nvmdi 30680 dipdi 30875 dipsubdir 30880 dipsubdi 30881 cgr3tr4 36016 cgr3rflx 36018 seglemin 36077 linerflx1 36113 elicc3 36283 rngosubdi 37905 rngosubdir 37906 igenval2 38026 dmncan1 38036 latmassOLD 39185 omlfh1N 39214 omlfh3N 39215 cvrnbtwn 39227 cvrnbtwn2 39231 cvrnbtwn4 39235 hlatj12 39327 cvrntr 39382 islpln2a 39505 3atnelvolN 39543 elpadd2at2 39764 paddasslem17 39793 paddass 39795 paddssw2 39801 pmapjlln1 39812 ltrn2ateq 40137 cdlemc3 40150 cdleme1b 40183 cdleme3b 40186 cdleme3c 40187 cdleme9b 40209 erngdvlem3 40947 erngdvlem3-rN 40955 dvalveclem 40982 mendlmod 43150 lincsumscmcl 48162 |
Copyright terms: Public domain | W3C validator |