|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| 3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | 
| 3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: infsupprpr 9545 ressress 17294 plttr 18388 plelttr 18390 latledi 18523 latmlej11 18524 latmlej21 18526 latmlej22 18527 latjass 18529 latj12 18530 latj31 18533 latdisdlem 18542 ipopos 18582 imasmnd2 18788 imasmnd 18789 grpaddsubass 19049 grpsubsub4 19052 grpnpncan 19054 imasgrp2 19074 imasgrp 19075 frgp0 19779 cmn12 19821 abladdsub 19831 imasrng 20175 imasring 20328 dvrass 20409 isdomn4 20717 lss1 20937 islmhm2 21038 zntoslem 21576 ipdir 21658 psrgrpOLD 21978 psrlmod 21981 t1sep 23379 mettri2 24352 xmetrtri 24366 xmetrtri2 24367 pi1grplem 25083 dchrabl 27299 motgrp 28552 xmstrkgc 28901 ax5seglem4 28948 grpomuldivass 30561 ablomuldiv 30572 ablodivdiv4 30574 nvmdi 30668 dipdi 30863 dipsubdir 30868 dipsubdi 30869 cgr3tr4 36054 cgr3rflx 36056 seglemin 36115 linerflx1 36151 elicc3 36319 rngosubdi 37953 rngosubdir 37954 igenval2 38074 dmncan1 38084 latmassOLD 39231 omlfh1N 39260 omlfh3N 39261 cvrnbtwn 39273 cvrnbtwn2 39277 cvrnbtwn4 39281 hlatj12 39373 cvrntr 39428 islpln2a 39551 3atnelvolN 39589 elpadd2at2 39810 paddasslem17 39839 paddass 39841 paddssw2 39847 pmapjlln1 39858 ltrn2ateq 40183 cdlemc3 40196 cdleme1b 40229 cdleme3b 40232 cdleme3c 40233 cdleme9b 40255 erngdvlem3 40993 erngdvlem3-rN 41001 dvalveclem 41028 mendlmod 43206 lincsumscmcl 48355 | 
| Copyright terms: Public domain | W3C validator |