Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1119 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: infsupprpr 9339 ressress 17032 plttr 18134 plelttr 18136 latledi 18269 latmlej11 18270 latmlej21 18272 latmlej22 18273 latjass 18275 latj12 18276 latj31 18279 latdisdlem 18288 ipopos 18328 imasmnd2 18496 imasmnd 18497 grpaddsubass 18738 grpsubsub4 18741 grpnpncan 18743 imasgrp2 18763 imasgrp 18764 frgp0 19438 cmn12 19479 abladdsub 19488 imasring 19930 dvrass 20004 lss1 20280 islmhm2 20380 zntoslem 20844 ipdir 20924 psrgrp 21247 psrlmod 21250 t1sep 22601 mettri2 23574 xmetrtri 23588 xmetrtri2 23589 pi1grplem 24292 dchrabl 26482 motgrp 27037 xmstrkgc 27386 ax5seglem4 27433 grpomuldivass 29035 ablomuldiv 29046 ablodivdiv4 29048 nvmdi 29142 dipdi 29337 dipsubdir 29342 dipsubdi 29343 cgr3tr4 34424 cgr3rflx 34426 seglemin 34485 linerflx1 34521 elicc3 34576 rngosubdi 36180 rngosubdir 36181 igenval2 36301 dmncan1 36311 latmassOLD 37468 omlfh1N 37497 omlfh3N 37498 cvrnbtwn 37510 cvrnbtwn2 37514 cvrnbtwn4 37518 hlatj12 37610 cvrntr 37665 islpln2a 37788 3atnelvolN 37826 elpadd2at2 38047 paddasslem17 38076 paddass 38078 paddssw2 38084 pmapjlln1 38095 ltrn2ateq 38420 cdlemc3 38433 cdleme1b 38466 cdleme3b 38469 cdleme3c 38470 cdleme9b 38492 erngdvlem3 39230 erngdvlem3-rN 39238 dvalveclem 39265 isdomn4 40401 mendlmod 41240 lincsumscmcl 46044 |
Copyright terms: Public domain | W3C validator |