| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: infsupprpr 9457 ressress 17217 plttr 18301 plelttr 18303 latledi 18436 latmlej11 18437 latmlej21 18439 latmlej22 18440 latjass 18442 latj12 18443 latj31 18446 latdisdlem 18455 ipopos 18495 imasmnd2 18701 imasmnd 18702 grpaddsubass 18962 grpsubsub4 18965 grpnpncan 18967 imasgrp2 18987 imasgrp 18988 frgp0 19690 cmn12 19732 abladdsub 19742 imasrng 20086 imasring 20239 dvrass 20317 isdomn4 20625 lss1 20844 islmhm2 20945 zntoslem 21466 ipdir 21548 psrgrpOLD 21866 psrlmod 21869 t1sep 23257 mettri2 24229 xmetrtri 24243 xmetrtri2 24244 pi1grplem 24949 dchrabl 27165 motgrp 28470 xmstrkgc 28813 ax5seglem4 28859 grpomuldivass 30470 ablomuldiv 30481 ablodivdiv4 30483 nvmdi 30577 dipdi 30772 dipsubdir 30777 dipsubdi 30778 cgr3tr4 36040 cgr3rflx 36042 seglemin 36101 linerflx1 36137 elicc3 36305 rngosubdi 37939 rngosubdir 37940 igenval2 38060 dmncan1 38070 latmassOLD 39222 omlfh1N 39251 omlfh3N 39252 cvrnbtwn 39264 cvrnbtwn2 39268 cvrnbtwn4 39272 hlatj12 39364 cvrntr 39419 islpln2a 39542 3atnelvolN 39580 elpadd2at2 39801 paddasslem17 39830 paddass 39832 paddssw2 39838 pmapjlln1 39849 ltrn2ateq 40174 cdlemc3 40187 cdleme1b 40220 cdleme3b 40223 cdleme3c 40224 cdleme9b 40246 erngdvlem3 40984 erngdvlem3-rN 40992 dvalveclem 41019 mendlmod 43178 lincsumscmcl 48422 |
| Copyright terms: Public domain | W3C validator |