| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: infsupprpr 9464 ressress 17224 plttr 18308 plelttr 18310 latledi 18443 latmlej11 18444 latmlej21 18446 latmlej22 18447 latjass 18449 latj12 18450 latj31 18453 latdisdlem 18462 ipopos 18502 imasmnd2 18708 imasmnd 18709 grpaddsubass 18969 grpsubsub4 18972 grpnpncan 18974 imasgrp2 18994 imasgrp 18995 frgp0 19697 cmn12 19739 abladdsub 19749 imasrng 20093 imasring 20246 dvrass 20324 isdomn4 20632 lss1 20851 islmhm2 20952 zntoslem 21473 ipdir 21555 psrgrpOLD 21873 psrlmod 21876 t1sep 23264 mettri2 24236 xmetrtri 24250 xmetrtri2 24251 pi1grplem 24956 dchrabl 27172 motgrp 28477 xmstrkgc 28820 ax5seglem4 28866 grpomuldivass 30477 ablomuldiv 30488 ablodivdiv4 30490 nvmdi 30584 dipdi 30779 dipsubdir 30784 dipsubdi 30785 cgr3tr4 36047 cgr3rflx 36049 seglemin 36108 linerflx1 36144 elicc3 36312 rngosubdi 37946 rngosubdir 37947 igenval2 38067 dmncan1 38077 latmassOLD 39229 omlfh1N 39258 omlfh3N 39259 cvrnbtwn 39271 cvrnbtwn2 39275 cvrnbtwn4 39279 hlatj12 39371 cvrntr 39426 islpln2a 39549 3atnelvolN 39587 elpadd2at2 39808 paddasslem17 39837 paddass 39839 paddssw2 39845 pmapjlln1 39856 ltrn2ateq 40181 cdlemc3 40194 cdleme1b 40227 cdleme3b 40230 cdleme3c 40231 cdleme9b 40253 erngdvlem3 40991 erngdvlem3-rN 40999 dvalveclem 41026 mendlmod 43185 lincsumscmcl 48426 |
| Copyright terms: Public domain | W3C validator |