| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: infsupprpr 9415 ressress 17176 plttr 18264 plelttr 18266 latledi 18401 latmlej11 18402 latmlej21 18404 latmlej22 18405 latjass 18407 latj12 18408 latj31 18411 latdisdlem 18420 ipopos 18460 imasmnd2 18666 imasmnd 18667 grpaddsubass 18927 grpsubsub4 18930 grpnpncan 18932 imasgrp2 18952 imasgrp 18953 frgp0 19657 cmn12 19699 abladdsub 19709 imasrng 20080 imasring 20233 dvrass 20311 isdomn4 20619 lss1 20859 islmhm2 20960 zntoslem 21481 ipdir 21564 psrgrpOLD 21882 psrlmod 21885 t1sep 23273 mettri2 24245 xmetrtri 24259 xmetrtri2 24260 pi1grplem 24965 dchrabl 27181 motgrp 28506 xmstrkgc 28849 ax5seglem4 28895 grpomuldivass 30503 ablomuldiv 30514 ablodivdiv4 30516 nvmdi 30610 dipdi 30805 dipsubdir 30810 dipsubdi 30811 cgr3tr4 36028 cgr3rflx 36030 seglemin 36089 linerflx1 36125 elicc3 36293 rngosubdi 37927 rngosubdir 37928 igenval2 38048 dmncan1 38058 latmassOLD 39210 omlfh1N 39239 omlfh3N 39240 cvrnbtwn 39252 cvrnbtwn2 39256 cvrnbtwn4 39260 hlatj12 39352 cvrntr 39407 islpln2a 39530 3atnelvolN 39568 elpadd2at2 39789 paddasslem17 39818 paddass 39820 paddssw2 39826 pmapjlln1 39837 ltrn2ateq 40162 cdlemc3 40175 cdleme1b 40208 cdleme3b 40211 cdleme3c 40212 cdleme9b 40234 erngdvlem3 40972 erngdvlem3-rN 40980 dvalveclem 41007 mendlmod 43165 lincsumscmcl 48422 |
| Copyright terms: Public domain | W3C validator |