![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1119 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1170 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: infsupprpr 9542 ressress 17294 plttr 18400 plelttr 18402 latledi 18535 latmlej11 18536 latmlej21 18538 latmlej22 18539 latjass 18541 latj12 18542 latj31 18545 latdisdlem 18554 ipopos 18594 imasmnd2 18800 imasmnd 18801 grpaddsubass 19061 grpsubsub4 19064 grpnpncan 19066 imasgrp2 19086 imasgrp 19087 frgp0 19793 cmn12 19835 abladdsub 19845 imasrng 20195 imasring 20344 dvrass 20425 isdomn4 20733 lss1 20954 islmhm2 21055 zntoslem 21593 ipdir 21675 psrgrpOLD 21995 psrlmod 21998 t1sep 23394 mettri2 24367 xmetrtri 24381 xmetrtri2 24382 pi1grplem 25096 dchrabl 27313 motgrp 28566 xmstrkgc 28915 ax5seglem4 28962 grpomuldivass 30570 ablomuldiv 30581 ablodivdiv4 30583 nvmdi 30677 dipdi 30872 dipsubdir 30877 dipsubdi 30878 cgr3tr4 36034 cgr3rflx 36036 seglemin 36095 linerflx1 36131 elicc3 36300 rngosubdi 37932 rngosubdir 37933 igenval2 38053 dmncan1 38063 latmassOLD 39211 omlfh1N 39240 omlfh3N 39241 cvrnbtwn 39253 cvrnbtwn2 39257 cvrnbtwn4 39261 hlatj12 39353 cvrntr 39408 islpln2a 39531 3atnelvolN 39569 elpadd2at2 39790 paddasslem17 39819 paddass 39821 paddssw2 39827 pmapjlln1 39838 ltrn2ateq 40163 cdlemc3 40176 cdleme1b 40209 cdleme3b 40212 cdleme3c 40213 cdleme9b 40235 erngdvlem3 40973 erngdvlem3-rN 40981 dvalveclem 41008 mendlmod 43178 lincsumscmcl 48279 |
Copyright terms: Public domain | W3C validator |