| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: infsupprpr 9401 ressress 17165 plttr 18254 plelttr 18256 latledi 18391 latmlej11 18392 latmlej21 18394 latmlej22 18395 latjass 18397 latj12 18398 latj31 18401 latdisdlem 18410 ipopos 18450 imasmnd2 18690 imasmnd 18691 grpaddsubass 18951 grpsubsub4 18954 grpnpncan 18956 imasgrp2 18976 imasgrp 18977 frgp0 19680 cmn12 19722 abladdsub 19732 imasrng 20103 imasring 20257 dvrass 20335 isdomn4 20640 lss1 20880 islmhm2 20981 zntoslem 21502 ipdir 21585 psrlmod 21906 t1sep 23305 mettri2 24276 xmetrtri 24290 xmetrtri2 24291 pi1grplem 24996 dchrabl 27212 motgrp 28541 xmstrkgc 28884 ax5seglem4 28931 grpomuldivass 30542 ablomuldiv 30553 ablodivdiv4 30555 nvmdi 30649 dipdi 30844 dipsubdir 30849 dipsubdi 30850 cgr3tr4 36168 cgr3rflx 36170 seglemin 36229 linerflx1 36265 elicc3 36433 rngosubdi 38058 rngosubdir 38059 igenval2 38179 dmncan1 38189 latmassOLD 39401 omlfh1N 39430 omlfh3N 39431 cvrnbtwn 39443 cvrnbtwn2 39447 cvrnbtwn4 39451 hlatj12 39543 cvrntr 39597 islpln2a 39720 3atnelvolN 39758 elpadd2at2 39979 paddasslem17 40008 paddass 40010 paddssw2 40016 pmapjlln1 40027 ltrn2ateq 40352 cdlemc3 40365 cdleme1b 40398 cdleme3b 40401 cdleme3c 40402 cdleme9b 40424 erngdvlem3 41162 erngdvlem3-rN 41170 dvalveclem 41197 mendlmod 43346 lincsumscmcl 48595 |
| Copyright terms: Public domain | W3C validator |