Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1118 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1169 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: infsupprpr 9224 ressress 16939 plttr 18041 plelttr 18043 latledi 18176 latmlej11 18177 latmlej21 18179 latmlej22 18180 latjass 18182 latj12 18183 latj31 18186 latdisdlem 18195 ipopos 18235 imasmnd2 18403 imasmnd 18404 grpaddsubass 18646 grpsubsub4 18649 grpnpncan 18651 imasgrp2 18671 imasgrp 18672 frgp0 19347 cmn12 19388 abladdsub 19397 imasring 19839 dvrass 19913 lss1 20181 islmhm2 20281 zntoslem 20745 ipdir 20825 psrgrp 21148 psrlmod 21151 t1sep 22502 mettri2 23475 xmetrtri 23489 xmetrtri2 23490 pi1grplem 24193 dchrabl 26383 motgrp 26885 xmstrkgc 27234 ax5seglem4 27281 grpomuldivass 28882 ablomuldiv 28893 ablodivdiv4 28895 nvmdi 28989 dipdi 29184 dipsubdir 29189 dipsubdi 29190 cgr3tr4 34333 cgr3rflx 34335 seglemin 34394 linerflx1 34430 elicc3 34485 rngosubdi 36082 rngosubdir 36083 igenval2 36203 dmncan1 36213 latmassOLD 37222 omlfh1N 37251 omlfh3N 37252 cvrnbtwn 37264 cvrnbtwn2 37268 cvrnbtwn4 37272 hlatj12 37364 cvrntr 37418 islpln2a 37541 3atnelvolN 37579 elpadd2at2 37800 paddasslem17 37829 paddass 37831 paddssw2 37837 pmapjlln1 37848 ltrn2ateq 38173 cdlemc3 38186 cdleme1b 38219 cdleme3b 38222 cdleme3c 38223 cdleme9b 38245 erngdvlem3 38983 erngdvlem3-rN 38991 dvalveclem 39018 isdomn4 40152 mendlmod 40998 lincsumscmcl 45726 |
Copyright terms: Public domain | W3C validator |