MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassaOLD Structured version   Visualization version   GIF version

Theorem sraassaOLD 21786
Description: Obsolete version of sraassa 21785 as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sraassa.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sraassaOLD ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg)

Proof of Theorem sraassaOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassa.a . . . 4 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
21a1i 11 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
43subrgss 20488 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
54adantl 481 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
62, 5srabase 21091 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴))
72, 5srasca 21094 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) = (Scalar‘𝐴))
8 eqid 2730 . . . 4 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 20497 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
109adantl 481 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(𝑊s 𝑆)))
112, 5sravsca 21095 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
122, 5sramulr 21093 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = (.r𝐴))
131sralmod 21101 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
1413adantl 481 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ LMod)
15 crngring 20161 . . . 4 (𝑊 ∈ CRing → 𝑊 ∈ Ring)
1615adantr 480 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ Ring)
17 eqidd 2731 . . . 4 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
182, 5sraaddg 21092 . . . . 5 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (+g𝑊) = (+g𝐴))
1918oveqdr 7418 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
2012oveqdr 7418 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑥(.r𝐴)𝑦))
2117, 6, 19, 20ringpropd 20204 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ Ring ↔ 𝐴 ∈ Ring))
2216, 21mpbid 232 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ Ring)
2316adantr 480 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
245adantr 480 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑆 ⊆ (Base‘𝑊))
25 simpr1 1195 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥𝑆)
2624, 25sseldd 3950 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
27 simpr2 1196 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
28 simpr3 1197 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
29 eqid 2730 . . . 4 (.r𝑊) = (.r𝑊)
303, 29ringass 20169 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
3123, 26, 27, 28, 30syl13anc 1374 . 2 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
32 eqid 2730 . . . . 5 (mulGrp‘𝑊) = (mulGrp‘𝑊)
3332crngmgp 20157 . . . 4 (𝑊 ∈ CRing → (mulGrp‘𝑊) ∈ CMnd)
3433ad2antrr 726 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (mulGrp‘𝑊) ∈ CMnd)
3532, 3mgpbas 20061 . . . 4 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
3632, 29mgpplusg 20060 . . . 4 (.r𝑊) = (+g‘(mulGrp‘𝑊))
3735, 36cmn12 19739 . . 3 (((mulGrp‘𝑊) ∈ CMnd ∧ (𝑦 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
3834, 27, 26, 28, 37syl13anc 1374 . 2 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
396, 7, 10, 11, 12, 14, 22, 31, 38isassad 21781 1 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  SubRingcsubrg 20485  LModclmod 20773  subringAlg csra 21085  AssAlgcasa 21766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-subg 19062  df-cmn 19719  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-subrg 20486  df-lmod 20775  df-sra 21087  df-assa 21769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator