MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassaOLD Structured version   Visualization version   GIF version

Theorem sraassaOLD 21423
Description: Obsolete version of sraassa 21422 as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sraassa.a 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
Assertion
Ref Expression
sraassaOLD ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ AssAlg)

Proof of Theorem sraassaOLD
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassa.a . . . 4 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
21a1i 11 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†))
3 eqid 2732 . . . . 5 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
43subrgss 20319 . . . 4 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
54adantl 482 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
62, 5srabase 20791 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π΄))
72, 5srasca 20797 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (π‘Š β†Ύs 𝑆) = (Scalarβ€˜π΄))
8 eqid 2732 . . . 4 (π‘Š β†Ύs 𝑆) = (π‘Š β†Ύs 𝑆)
98subrgbas 20327 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
109adantl 482 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝑆 = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
112, 5sravsca 20799 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (.rβ€˜π‘Š) = ( ·𝑠 β€˜π΄))
122, 5sramulr 20795 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (.rβ€˜π‘Š) = (.rβ€˜π΄))
131sralmod 20808 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝐴 ∈ LMod)
1413adantl 482 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ LMod)
15 crngring 20067 . . . 4 (π‘Š ∈ CRing β†’ π‘Š ∈ Ring)
1615adantr 481 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ π‘Š ∈ Ring)
17 eqidd 2733 . . . 4 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š))
182, 5sraaddg 20793 . . . . 5 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (+gβ€˜π‘Š) = (+gβ€˜π΄))
1918oveqdr 7436 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(+gβ€˜π‘Š)𝑦) = (π‘₯(+gβ€˜π΄)𝑦))
2012oveqdr 7436 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(.rβ€˜π‘Š)𝑦) = (π‘₯(.rβ€˜π΄)𝑦))
2117, 6, 19, 20ringpropd 20101 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (π‘Š ∈ Ring ↔ 𝐴 ∈ Ring))
2216, 21mpbid 231 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ Ring)
2316adantr 481 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘Š ∈ Ring)
245adantr 481 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
25 simpr1 1194 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ 𝑆)
2624, 25sseldd 3983 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
27 simpr2 1195 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
28 simpr3 1196 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑧 ∈ (Baseβ€˜π‘Š))
29 eqid 2732 . . . 4 (.rβ€˜π‘Š) = (.rβ€˜π‘Š)
303, 29ringass 20075 . . 3 ((π‘Š ∈ Ring ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
3123, 26, 27, 28, 30syl13anc 1372 . 2 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
32 eqid 2732 . . . . 5 (mulGrpβ€˜π‘Š) = (mulGrpβ€˜π‘Š)
3332crngmgp 20063 . . . 4 (π‘Š ∈ CRing β†’ (mulGrpβ€˜π‘Š) ∈ CMnd)
3433ad2antrr 724 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (mulGrpβ€˜π‘Š) ∈ CMnd)
3532, 3mgpbas 19992 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜(mulGrpβ€˜π‘Š))
3632, 29mgpplusg 19990 . . . 4 (.rβ€˜π‘Š) = (+gβ€˜(mulGrpβ€˜π‘Š))
3735, 36cmn12 19669 . . 3 (((mulGrpβ€˜π‘Š) ∈ CMnd ∧ (𝑦 ∈ (Baseβ€˜π‘Š) ∧ π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
3834, 27, 26, 28, 37syl13anc 1372 . 2 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
396, 7, 10, 11, 12, 14, 22, 31, 38isassad 21418 1 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143   β†Ύs cress 17172  +gcplusg 17196  .rcmulr 17197  CMndccmn 19647  mulGrpcmgp 19986  Ringcrg 20055  CRingccrg 20056  SubRingcsubrg 20314  LModclmod 20470  subringAlg csra 20780  AssAlgcasa 21404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-subg 19002  df-cmn 19649  df-mgp 19987  df-ur 20004  df-ring 20057  df-cring 20058  df-subrg 20316  df-lmod 20472  df-sra 20784  df-assa 21407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator