MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassaOLD Structured version   Visualization version   GIF version

Theorem sraassaOLD 21764
Description: Obsolete version of sraassa 21763 as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sraassa.a 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
Assertion
Ref Expression
sraassaOLD ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ AssAlg)

Proof of Theorem sraassaOLD
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassa.a . . . 4 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
21a1i 11 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†))
3 eqid 2726 . . . . 5 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
43subrgss 20474 . . . 4 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
54adantl 481 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
62, 5srabase 21026 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π΄))
72, 5srasca 21032 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (π‘Š β†Ύs 𝑆) = (Scalarβ€˜π΄))
8 eqid 2726 . . . 4 (π‘Š β†Ύs 𝑆) = (π‘Š β†Ύs 𝑆)
98subrgbas 20483 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
109adantl 481 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝑆 = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
112, 5sravsca 21034 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (.rβ€˜π‘Š) = ( ·𝑠 β€˜π΄))
122, 5sramulr 21030 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (.rβ€˜π‘Š) = (.rβ€˜π΄))
131sralmod 21043 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝐴 ∈ LMod)
1413adantl 481 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ LMod)
15 crngring 20150 . . . 4 (π‘Š ∈ CRing β†’ π‘Š ∈ Ring)
1615adantr 480 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ π‘Š ∈ Ring)
17 eqidd 2727 . . . 4 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š))
182, 5sraaddg 21028 . . . . 5 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (+gβ€˜π‘Š) = (+gβ€˜π΄))
1918oveqdr 7433 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(+gβ€˜π‘Š)𝑦) = (π‘₯(+gβ€˜π΄)𝑦))
2012oveqdr 7433 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(.rβ€˜π‘Š)𝑦) = (π‘₯(.rβ€˜π΄)𝑦))
2117, 6, 19, 20ringpropd 20187 . . 3 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (π‘Š ∈ Ring ↔ 𝐴 ∈ Ring))
2216, 21mpbid 231 . 2 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ Ring)
2316adantr 480 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘Š ∈ Ring)
245adantr 480 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
25 simpr1 1191 . . . 4 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ 𝑆)
2624, 25sseldd 3978 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
27 simpr2 1192 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
28 simpr3 1193 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑧 ∈ (Baseβ€˜π‘Š))
29 eqid 2726 . . . 4 (.rβ€˜π‘Š) = (.rβ€˜π‘Š)
303, 29ringass 20158 . . 3 ((π‘Š ∈ Ring ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
3123, 26, 27, 28, 30syl13anc 1369 . 2 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
32 eqid 2726 . . . . 5 (mulGrpβ€˜π‘Š) = (mulGrpβ€˜π‘Š)
3332crngmgp 20146 . . . 4 (π‘Š ∈ CRing β†’ (mulGrpβ€˜π‘Š) ∈ CMnd)
3433ad2antrr 723 . . 3 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (mulGrpβ€˜π‘Š) ∈ CMnd)
3532, 3mgpbas 20045 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜(mulGrpβ€˜π‘Š))
3632, 29mgpplusg 20043 . . . 4 (.rβ€˜π‘Š) = (+gβ€˜(mulGrpβ€˜π‘Š))
3735, 36cmn12 19722 . . 3 (((mulGrpβ€˜π‘Š) ∈ CMnd ∧ (𝑦 ∈ (Baseβ€˜π‘Š) ∧ π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
3834, 27, 26, 28, 37syl13anc 1369 . 2 (((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (𝑦(.rβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
396, 7, 10, 11, 12, 14, 22, 31, 38isassad 21759 1 ((π‘Š ∈ CRing ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153   β†Ύs cress 17182  +gcplusg 17206  .rcmulr 17207  CMndccmn 19700  mulGrpcmgp 20039  Ringcrg 20138  CRingccrg 20139  SubRingcsubrg 20469  LModclmod 20706  subringAlg csra 21019  AssAlgcasa 21745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-subg 19050  df-cmn 19702  df-mgp 20040  df-ur 20087  df-ring 20140  df-cring 20141  df-subrg 20471  df-lmod 20708  df-sra 21021  df-assa 21748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator