Step | Hyp | Ref
| Expression |
1 | | sraassa.a |
. . . 4
β’ π΄ = ((subringAlg βπ)βπ) |
2 | 1 | a1i 11 |
. . 3
β’ ((π β CRing β§ π β (SubRingβπ)) β π΄ = ((subringAlg βπ)βπ)) |
3 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
4 | 3 | subrgss 20319 |
. . . 4
β’ (π β (SubRingβπ) β π β (Baseβπ)) |
5 | 4 | adantl 482 |
. . 3
β’ ((π β CRing β§ π β (SubRingβπ)) β π β (Baseβπ)) |
6 | 2, 5 | srabase 20791 |
. 2
β’ ((π β CRing β§ π β (SubRingβπ)) β (Baseβπ) = (Baseβπ΄)) |
7 | 2, 5 | srasca 20797 |
. 2
β’ ((π β CRing β§ π β (SubRingβπ)) β (π βΎs π) = (Scalarβπ΄)) |
8 | | eqid 2732 |
. . . 4
β’ (π βΎs π) = (π βΎs π) |
9 | 8 | subrgbas 20327 |
. . 3
β’ (π β (SubRingβπ) β π = (Baseβ(π βΎs π))) |
10 | 9 | adantl 482 |
. 2
β’ ((π β CRing β§ π β (SubRingβπ)) β π = (Baseβ(π βΎs π))) |
11 | 2, 5 | sravsca 20799 |
. 2
β’ ((π β CRing β§ π β (SubRingβπ)) β
(.rβπ) = (
Β·π βπ΄)) |
12 | 2, 5 | sramulr 20795 |
. 2
β’ ((π β CRing β§ π β (SubRingβπ)) β
(.rβπ) =
(.rβπ΄)) |
13 | 1 | sralmod 20808 |
. . 3
β’ (π β (SubRingβπ) β π΄ β LMod) |
14 | 13 | adantl 482 |
. 2
β’ ((π β CRing β§ π β (SubRingβπ)) β π΄ β LMod) |
15 | | crngring 20067 |
. . . 4
β’ (π β CRing β π β Ring) |
16 | 15 | adantr 481 |
. . 3
β’ ((π β CRing β§ π β (SubRingβπ)) β π β Ring) |
17 | | eqidd 2733 |
. . . 4
β’ ((π β CRing β§ π β (SubRingβπ)) β (Baseβπ) = (Baseβπ)) |
18 | 2, 5 | sraaddg 20793 |
. . . . 5
β’ ((π β CRing β§ π β (SubRingβπ)) β
(+gβπ) =
(+gβπ΄)) |
19 | 18 | oveqdr 7436 |
. . . 4
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π₯(+gβπ)π¦) = (π₯(+gβπ΄)π¦)) |
20 | 12 | oveqdr 7436 |
. . . 4
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ))) β (π₯(.rβπ)π¦) = (π₯(.rβπ΄)π¦)) |
21 | 17, 6, 19, 20 | ringpropd 20101 |
. . 3
β’ ((π β CRing β§ π β (SubRingβπ)) β (π β Ring β π΄ β Ring)) |
22 | 16, 21 | mpbid 231 |
. 2
β’ ((π β CRing β§ π β (SubRingβπ)) β π΄ β Ring) |
23 | 16 | adantr 481 |
. . 3
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π β Ring) |
24 | 5 | adantr 481 |
. . . 4
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π β (Baseβπ)) |
25 | | simpr1 1194 |
. . . 4
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π₯ β π) |
26 | 24, 25 | sseldd 3983 |
. . 3
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π₯ β (Baseβπ)) |
27 | | simpr2 1195 |
. . 3
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π¦ β (Baseβπ)) |
28 | | simpr3 1196 |
. . 3
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β π§ β (Baseβπ)) |
29 | | eqid 2732 |
. . . 4
β’
(.rβπ) = (.rβπ) |
30 | 3, 29 | ringass 20075 |
. . 3
β’ ((π β Ring β§ (π₯ β (Baseβπ) β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ)π¦)(.rβπ)π§) = (π₯(.rβπ)(π¦(.rβπ)π§))) |
31 | 23, 26, 27, 28, 30 | syl13anc 1372 |
. 2
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β ((π₯(.rβπ)π¦)(.rβπ)π§) = (π₯(.rβπ)(π¦(.rβπ)π§))) |
32 | | eqid 2732 |
. . . . 5
β’
(mulGrpβπ) =
(mulGrpβπ) |
33 | 32 | crngmgp 20063 |
. . . 4
β’ (π β CRing β
(mulGrpβπ) β
CMnd) |
34 | 33 | ad2antrr 724 |
. . 3
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (mulGrpβπ) β CMnd) |
35 | 32, 3 | mgpbas 19992 |
. . . 4
β’
(Baseβπ) =
(Baseβ(mulGrpβπ)) |
36 | 32, 29 | mgpplusg 19990 |
. . . 4
β’
(.rβπ) = (+gβ(mulGrpβπ)) |
37 | 35, 36 | cmn12 19669 |
. . 3
β’
(((mulGrpβπ)
β CMnd β§ (π¦ β
(Baseβπ) β§ π₯ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(.rβπ)(π₯(.rβπ)π§)) = (π₯(.rβπ)(π¦(.rβπ)π§))) |
38 | 34, 27, 26, 28, 37 | syl13anc 1372 |
. 2
β’ (((π β CRing β§ π β (SubRingβπ)) β§ (π₯ β π β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ))) β (π¦(.rβπ)(π₯(.rβπ)π§)) = (π₯(.rβπ)(π¦(.rβπ)π§))) |
39 | 6, 7, 10, 11, 12, 14, 22, 31, 38 | isassad 21418 |
1
β’ ((π β CRing β§ π β (SubRingβπ)) β π΄ β AssAlg) |