![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6103 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 6267 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5687 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | rnexg 7897 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
6 | 4, 5 | eqeltrrid 2838 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
7 | dfdm4 5895 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
8 | dmexg 7896 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
9 | 7, 8 | eqeltrrid 2838 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
10 | 6, 9 | xpexd 7740 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
11 | ssexg 5323 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 × cxp 5674 ◡ccnv 5675 dom cdm 5676 ran crn 5677 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: cnvex 7918 relcnvexb 7919 cofunex2g 7938 tposexg 8227 cnven 9035 cnvct 9036 fopwdom 9082 domssex2 9139 domssex 9140 cnvfiALT 9336 mapfienlem2 9403 wemapwe 9694 hasheqf1oi 14315 brtrclfvcnv 14955 brcnvtrclfvcnv 14956 relexpcnv 14986 relexpnnrn 14996 relexpaddg 15004 imasle 17473 cnvps 18535 gsumvalx 18601 symginv 19311 tposmap 22179 metustel 24279 metustss 24280 metustfbas 24286 metuel2 24294 psmetutop 24296 restmetu 24299 itg2gt0 25502 nlfnval 31389 fnpreimac 32151 ffsrn 32209 pwrssmgc 32425 tocycfv 32526 elrspunidl 32808 ply1degltdimlem 32983 algextdeglem8 33057 rhmpreimacnlem 33150 eulerpartlemgs2 33665 orvcval 33742 coinfliprv 33767 cossex 37592 cosscnvex 37593 cnvelrels 37668 lkrval 38261 pw2f1o2val 42080 lmhmlnmsplit 42131 cnvcnvintabd 42653 clrellem 42675 relexpaddss 42771 cnvtrclfv 42777 rntrclfvRP 42784 xpexb 43515 sge0f1o 45397 smfco 45817 preimafvelsetpreimafv 46355 fundcmpsurinjlem2 46366 |
Copyright terms: Public domain | W3C validator |