![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6134 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 6299 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5711 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | rnexg 7942 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
6 | 4, 5 | eqeltrrid 2849 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
7 | dfdm4 5920 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
8 | dmexg 7941 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
9 | 7, 8 | eqeltrrid 2849 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
10 | 6, 9 | xpexd 7786 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
11 | ssexg 5341 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
12 | 3, 10, 11 | sylancr 586 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: cnvex 7965 relcnvexb 7966 cofunex2g 7990 tposexg 8281 cnven 9098 cnvct 9099 fopwdom 9146 domssex2 9203 domssex 9204 cnvfiALT 9407 mapfienlem2 9475 wemapwe 9766 hasheqf1oi 14400 brtrclfvcnv 15053 brcnvtrclfvcnv 15054 relexpcnv 15084 relexpnnrn 15094 relexpaddg 15102 imasle 17583 cnvps 18648 gsumvalx 18714 symginv 19444 tposmap 22484 metustel 24584 metustss 24585 metustfbas 24591 metuel2 24599 psmetutop 24601 restmetu 24604 itg2gt0 25815 nlfnval 31913 fnpreimac 32689 ffsrn 32743 pwrssmgc 32973 tocycfv 33102 elrspunidl 33421 ply1degltdimlem 33635 algextdeglem8 33715 rhmpreimacnlem 33830 eulerpartlemgs2 34345 orvcval 34422 coinfliprv 34447 cossex 38375 cosscnvex 38376 cnvelrels 38451 lkrval 39044 aks6d1c2lem4 42084 aks6d1c6lem2 42128 aks6d1c6lem3 42129 pw2f1o2val 42996 lmhmlnmsplit 43044 cnvcnvintabd 43562 clrellem 43584 relexpaddss 43680 cnvtrclfv 43686 rntrclfvRP 43693 xpexb 44423 sge0f1o 46303 smfco 46723 preimafvelsetpreimafv 47262 fundcmpsurinjlem2 47273 grimcnv 47763 grlicsym 47830 |
Copyright terms: Public domain | W3C validator |