Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6012 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 6172 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5600 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | rnexg 7751 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
6 | 4, 5 | eqeltrrid 2844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
7 | dfdm4 5804 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
8 | dmexg 7750 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
9 | 7, 8 | eqeltrrid 2844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
10 | 6, 9 | xpexd 7601 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
11 | ssexg 5247 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 × cxp 5587 ◡ccnv 5588 dom cdm 5589 ran crn 5590 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: cnvex 7772 relcnvexb 7773 cofunex2g 7792 tposexg 8056 cnven 8823 cnvct 8824 fopwdom 8867 domssex2 8924 domssex 8925 cnvfiALT 9101 mapfienlem2 9165 wemapwe 9455 hasheqf1oi 14066 brtrclfvcnv 14715 brcnvtrclfvcnv 14716 relexpcnv 14746 relexpnnrn 14756 relexpaddg 14764 imasle 17234 cnvps 18296 gsumvalx 18360 symginv 19010 tposmap 21606 metustel 23706 metustss 23707 metustfbas 23713 metuel2 23721 psmetutop 23723 restmetu 23726 itg2gt0 24925 nlfnval 30243 fnpreimac 31008 ffsrn 31064 pwrssmgc 31278 tocycfv 31376 elrspunidl 31606 rhmpreimacnlem 31834 eulerpartlemgs2 32347 orvcval 32424 coinfliprv 32449 cossex 36542 cosscnvex 36543 cnvelrels 36613 lkrval 37102 pw2f1o2val 40861 lmhmlnmsplit 40912 cnvcnvintabd 41208 clrellem 41230 relexpaddss 41326 cnvtrclfv 41332 rntrclfvRP 41339 xpexb 42072 sge0f1o 43920 smfco 44336 preimafvelsetpreimafv 44840 fundcmpsurinjlem2 44851 |
Copyright terms: Public domain | W3C validator |