| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6096 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 6262 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 5670 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | rnexg 7903 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2840 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
| 7 | dfdm4 5880 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 8 | dmexg 7902 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 9 | 7, 8 | eqeltrrid 2840 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
| 10 | 6, 9 | xpexd 7750 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
| 11 | ssexg 5298 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
| 12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 × cxp 5657 ◡ccnv 5658 dom cdm 5659 ran crn 5660 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: cnvex 7926 relcnvexb 7927 cofunex2g 7953 tposexg 8244 cnven 9052 cnvct 9053 fopwdom 9099 domssex2 9156 domssex 9157 cnvfiALT 9356 mapfienlem2 9423 wemapwe 9716 hasheqf1oi 14374 brtrclfvcnv 15028 brcnvtrclfvcnv 15029 relexpcnv 15059 relexpnnrn 15069 relexpaddg 15077 imasle 17542 cnvps 18593 gsumvalx 18659 symginv 19388 tposmap 22400 metustel 24494 metustss 24495 metustfbas 24501 metuel2 24509 psmetutop 24511 restmetu 24514 itg2gt0 25718 nlfnval 31867 fnpreimac 32654 ffsrn 32711 pwrssmgc 32985 tocycfv 33125 elrspunidl 33448 ply1degltdimlem 33667 algextdeglem8 33763 rhmpreimacnlem 33920 eulerpartlemgs2 34417 orvcval 34495 coinfliprv 34520 cossex 38442 cosscnvex 38443 cnvelrels 38518 lkrval 39111 aks6d1c2lem4 42145 aks6d1c6lem2 42189 aks6d1c6lem3 42190 pw2f1o2val 43030 lmhmlnmsplit 43078 cnvcnvintabd 43591 clrellem 43613 relexpaddss 43709 cnvtrclfv 43715 rntrclfvRP 43722 xpexb 44445 sge0f1o 46378 smfco 46798 preimafvelsetpreimafv 47369 fundcmpsurinjlem2 47380 grimcnv 47868 grlicsym 47985 imasubclem1 49030 |
| Copyright terms: Public domain | W3C validator |