| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6075 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 6241 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 5649 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | rnexg 7878 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2833 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
| 7 | dfdm4 5859 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 8 | dmexg 7877 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 9 | 7, 8 | eqeltrrid 2833 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
| 10 | 6, 9 | xpexd 7727 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
| 11 | ssexg 5278 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
| 12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: cnvex 7901 relcnvexb 7902 cofunex2g 7928 tposexg 8219 cnven 9004 cnvct 9005 fopwdom 9049 domssex2 9101 domssex 9102 cnvfiALT 9290 mapfienlem2 9357 wemapwe 9650 hasheqf1oi 14316 brtrclfvcnv 14970 brcnvtrclfvcnv 14971 relexpcnv 15001 relexpnnrn 15011 relexpaddg 15019 imasle 17486 cnvps 18537 gsumvalx 18603 symginv 19332 tposmap 22344 metustel 24438 metustss 24439 metustfbas 24445 metuel2 24453 psmetutop 24455 restmetu 24458 itg2gt0 25661 nlfnval 31810 fnpreimac 32595 ffsrn 32652 pwrssmgc 32926 tocycfv 33066 elrspunidl 33399 ply1degltdimlem 33618 algextdeglem8 33714 rhmpreimacnlem 33874 eulerpartlemgs2 34371 orvcval 34449 coinfliprv 34474 cossex 38410 cosscnvex 38411 cnvelrels 38486 lkrval 39081 aks6d1c2lem4 42115 aks6d1c6lem2 42159 aks6d1c6lem3 42160 pw2f1o2val 43028 lmhmlnmsplit 43076 cnvcnvintabd 43589 clrellem 43611 relexpaddss 43707 cnvtrclfv 43713 rntrclfvRP 43720 xpexb 44443 sge0f1o 46380 smfco 46800 preimafvelsetpreimafv 47389 fundcmpsurinjlem2 47400 grimcnv 47888 grlicsym 48005 imasubclem1 49093 |
| Copyright terms: Public domain | W3C validator |