| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6060 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 6224 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 5632 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | rnexg 7841 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2838 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
| 7 | dfdm4 5841 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 8 | dmexg 7840 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 9 | 7, 8 | eqeltrrid 2838 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
| 10 | 6, 9 | xpexd 7693 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
| 11 | ssexg 5265 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
| 12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ran crn 5622 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: cnvex 7864 relcnvexb 7865 cofunex2g 7891 tposexg 8179 cnven 8966 cnvct 8967 fopwdom 9009 domssex2 9061 domssex 9062 cnvfiALT 9234 mapfienlem2 9301 wemapwe 9598 hasheqf1oi 14265 brtrclfvcnv 14918 brcnvtrclfvcnv 14919 relexpcnv 14949 relexpnnrn 14959 relexpaddg 14967 imasle 17435 cnvps 18492 gsumvalx 18592 symginv 19322 tposmap 22392 metustel 24485 metustss 24486 metustfbas 24492 metuel2 24500 psmetutop 24502 restmetu 24505 itg2gt0 25708 nlfnval 31882 fnpreimac 32675 ffsrn 32735 pwrssmgc 33010 tocycfv 33119 elrspunidl 33437 ply1degltdimlem 33707 algextdeglem8 33809 rhmpreimacnlem 33969 eulerpartlemgs2 34465 orvcval 34543 coinfliprv 34568 cossex 38594 cosscnvex 38595 cnvelrels 38661 lkrval 39260 aks6d1c2lem4 42293 aks6d1c6lem2 42337 aks6d1c6lem3 42338 pw2f1o2val 43196 lmhmlnmsplit 43244 cnvcnvintabd 43757 clrellem 43779 relexpaddss 43875 cnvtrclfv 43881 rntrclfvRP 43888 xpexb 44610 sge0f1o 46542 smfco 46962 preimafvelsetpreimafv 47550 fundcmpsurinjlem2 47561 grimcnv 48050 grlicsym 48175 imasubclem1 49265 |
| Copyright terms: Public domain | W3C validator |