| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6059 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 6221 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 5634 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | rnexg 7842 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2833 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
| 7 | dfdm4 5842 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 8 | dmexg 7841 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 9 | 7, 8 | eqeltrrid 2833 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
| 10 | 6, 9 | xpexd 7691 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
| 11 | ssexg 5265 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
| 12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: cnvex 7865 relcnvexb 7866 cofunex2g 7892 tposexg 8180 cnven 8965 cnvct 8966 fopwdom 9009 domssex2 9061 domssex 9062 cnvfiALT 9248 mapfienlem2 9315 wemapwe 9612 hasheqf1oi 14276 brtrclfvcnv 14929 brcnvtrclfvcnv 14930 relexpcnv 14960 relexpnnrn 14970 relexpaddg 14978 imasle 17445 cnvps 18502 gsumvalx 18568 symginv 19299 tposmap 22360 metustel 24454 metustss 24455 metustfbas 24461 metuel2 24469 psmetutop 24471 restmetu 24474 itg2gt0 25677 nlfnval 31843 fnpreimac 32628 ffsrn 32685 pwrssmgc 32955 tocycfv 33064 elrspunidl 33378 ply1degltdimlem 33597 algextdeglem8 33693 rhmpreimacnlem 33853 eulerpartlemgs2 34350 orvcval 34428 coinfliprv 34453 cossex 38398 cosscnvex 38399 cnvelrels 38474 lkrval 39069 aks6d1c2lem4 42103 aks6d1c6lem2 42147 aks6d1c6lem3 42148 pw2f1o2val 43015 lmhmlnmsplit 43063 cnvcnvintabd 43576 clrellem 43598 relexpaddss 43694 cnvtrclfv 43700 rntrclfvRP 43707 xpexb 44430 sge0f1o 46367 smfco 46787 preimafvelsetpreimafv 47376 fundcmpsurinjlem2 47387 grimcnv 47876 grlicsym 48001 imasubclem1 49093 |
| Copyright terms: Public domain | W3C validator |