![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6125 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 6290 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5700 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | rnexg 7925 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
6 | 4, 5 | eqeltrrid 2844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
7 | dfdm4 5909 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
8 | dmexg 7924 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
9 | 7, 8 | eqeltrrid 2844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
10 | 6, 9 | xpexd 7770 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
11 | ssexg 5329 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 × cxp 5687 ◡ccnv 5688 dom cdm 5689 ran crn 5690 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: cnvex 7948 relcnvexb 7949 cofunex2g 7973 tposexg 8264 cnven 9072 cnvct 9073 fopwdom 9119 domssex2 9176 domssex 9177 cnvfiALT 9377 mapfienlem2 9444 wemapwe 9735 hasheqf1oi 14387 brtrclfvcnv 15040 brcnvtrclfvcnv 15041 relexpcnv 15071 relexpnnrn 15081 relexpaddg 15089 imasle 17570 cnvps 18636 gsumvalx 18702 symginv 19435 tposmap 22479 metustel 24579 metustss 24580 metustfbas 24586 metuel2 24594 psmetutop 24596 restmetu 24599 itg2gt0 25810 nlfnval 31910 fnpreimac 32688 ffsrn 32747 pwrssmgc 32975 tocycfv 33112 elrspunidl 33436 ply1degltdimlem 33650 algextdeglem8 33730 rhmpreimacnlem 33845 eulerpartlemgs2 34362 orvcval 34439 coinfliprv 34464 cossex 38401 cosscnvex 38402 cnvelrels 38477 lkrval 39070 aks6d1c2lem4 42109 aks6d1c6lem2 42153 aks6d1c6lem3 42154 pw2f1o2val 43028 lmhmlnmsplit 43076 cnvcnvintabd 43590 clrellem 43612 relexpaddss 43708 cnvtrclfv 43714 rntrclfvRP 43721 xpexb 44450 sge0f1o 46338 smfco 46758 preimafvelsetpreimafv 47313 fundcmpsurinjlem2 47324 grimcnv 47817 grlicsym 47909 |
Copyright terms: Public domain | W3C validator |