| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6078 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 6244 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 5652 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | rnexg 7881 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2834 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
| 7 | dfdm4 5862 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 8 | dmexg 7880 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 9 | 7, 8 | eqeltrrid 2834 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
| 10 | 6, 9 | xpexd 7730 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
| 11 | ssexg 5281 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
| 12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: cnvex 7904 relcnvexb 7905 cofunex2g 7931 tposexg 8222 cnven 9007 cnvct 9008 fopwdom 9054 domssex2 9107 domssex 9108 cnvfiALT 9297 mapfienlem2 9364 wemapwe 9657 hasheqf1oi 14323 brtrclfvcnv 14977 brcnvtrclfvcnv 14978 relexpcnv 15008 relexpnnrn 15018 relexpaddg 15026 imasle 17493 cnvps 18544 gsumvalx 18610 symginv 19339 tposmap 22351 metustel 24445 metustss 24446 metustfbas 24452 metuel2 24460 psmetutop 24462 restmetu 24465 itg2gt0 25668 nlfnval 31817 fnpreimac 32602 ffsrn 32659 pwrssmgc 32933 tocycfv 33073 elrspunidl 33406 ply1degltdimlem 33625 algextdeglem8 33721 rhmpreimacnlem 33881 eulerpartlemgs2 34378 orvcval 34456 coinfliprv 34481 cossex 38417 cosscnvex 38418 cnvelrels 38493 lkrval 39088 aks6d1c2lem4 42122 aks6d1c6lem2 42166 aks6d1c6lem3 42167 pw2f1o2val 43035 lmhmlnmsplit 43083 cnvcnvintabd 43596 clrellem 43618 relexpaddss 43714 cnvtrclfv 43720 rntrclfvRP 43727 xpexb 44450 sge0f1o 46387 smfco 46807 preimafvelsetpreimafv 47393 fundcmpsurinjlem2 47404 grimcnv 47892 grlicsym 48009 imasubclem1 49097 |
| Copyright terms: Public domain | W3C validator |