| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version | ||
| Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
| Ref | Expression |
|---|---|
| cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6048 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 6211 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 5622 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | rnexg 7827 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 6 | 4, 5 | eqeltrrid 2836 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
| 7 | dfdm4 5830 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 8 | dmexg 7826 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 9 | 7, 8 | eqeltrrid 2836 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
| 10 | 6, 9 | xpexd 7679 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
| 11 | ssexg 5256 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
| 12 | 3, 10, 11 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 × cxp 5609 ◡ccnv 5610 dom cdm 5611 ran crn 5612 Rel wrel 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: cnvex 7850 relcnvexb 7851 cofunex2g 7877 tposexg 8165 cnven 8950 cnvct 8951 fopwdom 8993 domssex2 9045 domssex 9046 cnvfiALT 9218 mapfienlem2 9285 wemapwe 9582 hasheqf1oi 14253 brtrclfvcnv 14906 brcnvtrclfvcnv 14907 relexpcnv 14937 relexpnnrn 14947 relexpaddg 14955 imasle 17422 cnvps 18479 gsumvalx 18579 symginv 19309 tposmap 22367 metustel 24460 metustss 24461 metustfbas 24467 metuel2 24475 psmetutop 24477 restmetu 24480 itg2gt0 25683 nlfnval 31853 fnpreimac 32645 ffsrn 32703 pwrssmgc 32973 tocycfv 33070 elrspunidl 33385 ply1degltdimlem 33627 algextdeglem8 33729 rhmpreimacnlem 33889 eulerpartlemgs2 34385 orvcval 34463 coinfliprv 34488 cossex 38456 cosscnvex 38457 cnvelrels 38532 lkrval 39127 aks6d1c2lem4 42160 aks6d1c6lem2 42204 aks6d1c6lem3 42205 pw2f1o2val 43072 lmhmlnmsplit 43120 cnvcnvintabd 43633 clrellem 43655 relexpaddss 43751 cnvtrclfv 43757 rntrclfvRP 43764 xpexb 44486 sge0f1o 46420 smfco 46840 preimafvelsetpreimafv 47419 fundcmpsurinjlem2 47430 grimcnv 47919 grlicsym 48044 imasubclem1 49136 |
| Copyright terms: Public domain | W3C validator |