Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvexg | Structured version Visualization version GIF version |
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
Ref | Expression |
---|---|
cnvexg | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6001 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 6161 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5591 | . . . 4 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | rnexg 7725 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
6 | 4, 5 | eqeltrrid 2844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom ◡𝐴 ∈ V) |
7 | dfdm4 5793 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
8 | dmexg 7724 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
9 | 7, 8 | eqeltrrid 2844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran ◡𝐴 ∈ V) |
10 | 6, 9 | xpexd 7579 | . 2 ⊢ (𝐴 ∈ 𝑉 → (dom ◡𝐴 × ran ◡𝐴) ∈ V) |
11 | ssexg 5242 | . 2 ⊢ ((◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) ∧ (dom ◡𝐴 × ran ◡𝐴) ∈ V) → ◡𝐴 ∈ V) | |
12 | 3, 10, 11 | sylancr 586 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ran crn 5581 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: cnvex 7746 relcnvexb 7747 cofunex2g 7766 tposexg 8027 cnven 8777 cnvct 8778 fopwdom 8820 domssex2 8873 domssex 8874 cnvfiALT 9031 mapfienlem2 9095 wemapwe 9385 hasheqf1oi 13994 brtrclfvcnv 14643 brcnvtrclfvcnv 14644 relexpcnv 14674 relexpnnrn 14684 relexpaddg 14692 imasle 17151 cnvps 18211 gsumvalx 18275 symginv 18925 tposmap 21514 metustel 23612 metustss 23613 metustfbas 23619 metuel2 23627 psmetutop 23629 restmetu 23632 itg2gt0 24830 nlfnval 30144 fnpreimac 30910 ffsrn 30966 pwrssmgc 31180 tocycfv 31278 elrspunidl 31508 rhmpreimacnlem 31736 eulerpartlemgs2 32247 orvcval 32324 coinfliprv 32349 cossex 36469 cosscnvex 36470 cnvelrels 36540 lkrval 37029 pw2f1o2val 40777 lmhmlnmsplit 40828 cnvcnvintabd 41097 clrellem 41119 relexpaddss 41215 cnvtrclfv 41221 rntrclfvRP 41228 xpexb 41961 sge0f1o 43810 smfco 44223 preimafvelsetpreimafv 44728 fundcmpsurinjlem2 44739 |
Copyright terms: Public domain | W3C validator |