Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressn | Structured version Visualization version GIF version |
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
ressn | ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5909 | . 2 ⊢ Rel (𝐴 ↾ {𝐵}) | |
2 | relxp 5598 | . 2 ⊢ Rel ({𝐵} × (𝐴 “ {𝐵})) | |
3 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | elimasn 5986 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
6 | elsni 4575 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) | |
7 | 6 | sneqd 4570 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐵} → {𝑥} = {𝐵}) |
8 | 7 | imaeq2d 5958 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵})) |
9 | 8 | eleq2d 2824 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
10 | 5, 9 | bitr3id 284 | . . . 4 ⊢ (𝑥 ∈ {𝐵} → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝑦 ∈ (𝐴 “ {𝐵}))) |
11 | 10 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) |
12 | 4 | opelresi 5888 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
13 | opelxp 5616 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵}))) | |
14 | 11, 12, 13 | 3bitr4i 302 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ {𝐵}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐵} × (𝐴 “ {𝐵}))) |
15 | 1, 2, 14 | eqrelriiv 5689 | 1 ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 × cxp 5578 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: gsum2dlem2 19487 dprd2da 19560 ustneism 23283 |
Copyright terms: Public domain | W3C validator |