MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressn Structured version   Visualization version   GIF version

Theorem ressn 6316
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
ressn (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))

Proof of Theorem ressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6035 . 2 Rel (𝐴 ↾ {𝐵})
2 relxp 5718 . 2 Rel ({𝐵} × (𝐴 “ {𝐵}))
3 vex 3492 . . . . . 6 𝑥 ∈ V
4 vex 3492 . . . . . 6 𝑦 ∈ V
53, 4elimasn 6119 . . . . 5 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
6 elsni 4665 . . . . . . . 8 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
76sneqd 4660 . . . . . . 7 (𝑥 ∈ {𝐵} → {𝑥} = {𝐵})
87imaeq2d 6089 . . . . . 6 (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵}))
98eleq2d 2830 . . . . 5 (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵})))
105, 9bitr3id 285 . . . 4 (𝑥 ∈ {𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ (𝐴 “ {𝐵})))
1110pm5.32i 574 . . 3 ((𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
124opelresi 6017 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
13 opelxp 5736 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
1411, 12, 133bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})))
151, 2, 14eqrelriiv 5814 1 (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  {csn 4648  cop 4654   × cxp 5698  cres 5702  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  gsum2dlem2  20013  dprd2da  20086  ustneism  24253
  Copyright terms: Public domain W3C validator