![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtpos0 | Structured version Visualization version GIF version |
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows us to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 7599. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos2 7596 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
2 | ssun2 3975 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
3 | 0ex 4984 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | 3 | snid 4400 | . . . . 5 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 3795 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
6 | 5 | biantrur 527 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
7 | cnvsn0 5819 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
8 | 7 | unieqi 4637 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
9 | uni0 4657 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
10 | 8, 9 | eqtri 2821 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
11 | 10 | breq1i 4850 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
12 | 6, 11 | bitr3i 269 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
13 | 1, 12 | syl6bb 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ∪ cun 3767 ∅c0 4115 {csn 4368 ∪ cuni 4628 class class class wbr 4843 ◡ccnv 5311 dom cdm 5312 tpos ctpos 7589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 df-tpos 7590 |
This theorem is referenced by: reldmtpos 7598 brtpos 7599 tpostpos 7610 |
Copyright terms: Public domain | W3C validator |