| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brtpos0 | Structured version Visualization version GIF version | ||
| Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8165. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos2 8162 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
| 2 | ssun2 4126 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
| 3 | 0ex 5243 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4612 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3926 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
| 6 | 5 | biantrur 530 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
| 7 | cnvsn0 6157 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
| 8 | 7 | unieqi 4868 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
| 9 | uni0 4884 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 10 | 8, 9 | eqtri 2754 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
| 11 | 10 | breq1i 5096 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
| 12 | 6, 11 | bitr3i 277 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
| 13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∪ cun 3895 ∅c0 4280 {csn 4573 ∪ cuni 4856 class class class wbr 5089 ◡ccnv 5613 dom cdm 5614 tpos ctpos 8155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-tpos 8156 |
| This theorem is referenced by: reldmtpos 8164 brtpos 8165 tpostpos 8176 tposres0 48987 |
| Copyright terms: Public domain | W3C validator |