Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brtpos0 | Structured version Visualization version GIF version |
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows us to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8022. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos2 8019 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
2 | ssun2 4103 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
3 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | 3 | snid 4594 | . . . . 5 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 3914 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
6 | 5 | biantrur 530 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
7 | cnvsn0 6102 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
8 | 7 | unieqi 4849 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
9 | uni0 4866 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
10 | 8, 9 | eqtri 2766 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
11 | 10 | breq1i 5077 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
12 | 6, 11 | bitr3i 276 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
13 | 1, 12 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∪ cun 3881 ∅c0 4253 {csn 4558 ∪ cuni 4836 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 tpos ctpos 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-tpos 8013 |
This theorem is referenced by: reldmtpos 8021 brtpos 8022 tpostpos 8033 |
Copyright terms: Public domain | W3C validator |