![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtpos0 | Structured version Visualization version GIF version |
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8276. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos2 8273 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
2 | ssun2 4202 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
3 | 0ex 5325 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | 3 | snid 4684 | . . . . 5 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 4005 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
6 | 5 | biantrur 530 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
7 | cnvsn0 6241 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
8 | 7 | unieqi 4943 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
9 | uni0 4959 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
10 | 8, 9 | eqtri 2768 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
11 | 10 | breq1i 5173 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
12 | 6, 11 | bitr3i 277 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∪ cun 3974 ∅c0 4352 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ◡ccnv 5699 dom cdm 5700 tpos ctpos 8266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-tpos 8267 |
This theorem is referenced by: reldmtpos 8275 brtpos 8276 tpostpos 8287 |
Copyright terms: Public domain | W3C validator |