| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brtpos0 | Structured version Visualization version GIF version | ||
| Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8214. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos2 8211 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
| 2 | ssun2 4142 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
| 3 | 0ex 5262 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4626 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3943 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
| 6 | 5 | biantrur 530 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
| 7 | cnvsn0 6183 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
| 8 | 7 | unieqi 4883 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
| 9 | uni0 4899 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 10 | 8, 9 | eqtri 2752 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
| 11 | 10 | breq1i 5114 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
| 12 | 6, 11 | bitr3i 277 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
| 13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∪ cun 3912 ∅c0 4296 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ◡ccnv 5637 dom cdm 5638 tpos ctpos 8204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-tpos 8205 |
| This theorem is referenced by: reldmtpos 8213 brtpos 8214 tpostpos 8225 tposres0 48865 |
| Copyright terms: Public domain | W3C validator |