![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtpos0 | Structured version Visualization version GIF version |
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8219. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos2 8216 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
2 | ssun2 4173 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
3 | 0ex 5307 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | 3 | snid 4664 | . . . . 5 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 3979 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
6 | 5 | biantrur 531 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
7 | cnvsn0 6209 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
8 | 7 | unieqi 4921 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
9 | uni0 4939 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
10 | 8, 9 | eqtri 2760 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
11 | 10 | breq1i 5155 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
12 | 6, 11 | bitr3i 276 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
13 | 1, 12 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∪ cun 3946 ∅c0 4322 {csn 4628 ∪ cuni 4908 class class class wbr 5148 ◡ccnv 5675 dom cdm 5676 tpos ctpos 8209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-tpos 8210 |
This theorem is referenced by: reldmtpos 8218 brtpos 8219 tpostpos 8230 |
Copyright terms: Public domain | W3C validator |