| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brtpos0 | Structured version Visualization version GIF version | ||
| Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). This allows to eliminate sethood hypotheses on 𝐴, 𝐵 in brtpos 8168. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos2 8165 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
| 2 | ssun2 4130 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
| 3 | 0ex 5246 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | 3 | snid 4614 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 5 | 2, 4 | sselii 3932 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
| 6 | 5 | biantrur 530 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
| 7 | cnvsn0 6159 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
| 8 | 7 | unieqi 4870 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
| 9 | uni0 4886 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 10 | 8, 9 | eqtri 2752 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
| 11 | 10 | breq1i 5099 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
| 12 | 6, 11 | bitr3i 277 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
| 13 | 1, 12 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∪ cun 3901 ∅c0 4284 {csn 4577 ∪ cuni 4858 class class class wbr 5092 ◡ccnv 5618 dom cdm 5619 tpos ctpos 8158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-tpos 8159 |
| This theorem is referenced by: reldmtpos 8167 brtpos 8168 tpostpos 8179 tposres0 48865 |
| Copyright terms: Public domain | W3C validator |