| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relrn0 | Structured version Visualization version GIF version | ||
| Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| relrn0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldm0 5894 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | |
| 2 | dm0rn0 5891 | . 2 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∅c0 4299 dom cdm 5641 ran crn 5642 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: cnvsn0 6186 coeq0 6231 foconst 6790 fconst5 7183 cnvfi 9146 edg0iedg0 28989 edg0usgr 29187 usgr1v0edg 29191 tocyccntz 33108 1arithidom 33515 heicant 37656 tfsconcat00 43343 |
| Copyright terms: Public domain | W3C validator |