MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrn0 Structured version   Visualization version   GIF version

Theorem relrn0 5968
Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
relrn0 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))

Proof of Theorem relrn0
StepHypRef Expression
1 reldm0 5927 . 2 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
2 dm0rn0 5924 . 2 (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
31, 2bitrdi 287 1 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  c0 4322  dom cdm 5676  ran crn 5677  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  cnvsn0  6209  coeq0  6254  foconst  6820  fconst5  7209  cnvfi  9186  edg0iedg0  28748  edg0usgr  28943  usgr1v0edg  28947  tocyccntz  32739  heicant  36987  tfsconcat00  42560
  Copyright terms: Public domain W3C validator