| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relrn0 | Structured version Visualization version GIF version | ||
| Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| relrn0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldm0 5912 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | |
| 2 | dm0rn0 5909 | . 2 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∅c0 4313 dom cdm 5659 ran crn 5660 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: cnvsn0 6204 coeq0 6249 foconst 6810 fconst5 7203 cnvfi 9195 edg0iedg0 29039 edg0usgr 29237 usgr1v0edg 29241 tocyccntz 33160 1arithidom 33557 heicant 37684 tfsconcat00 43338 |
| Copyright terms: Public domain | W3C validator |