Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relrn0 | Structured version Visualization version GIF version |
Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
relrn0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldm0 5826 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | |
2 | dm0rn0 5823 | . 2 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | |
3 | 1, 2 | bitrdi 286 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∅c0 4253 dom cdm 5580 ran crn 5581 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: cnvsn0 6102 coeq0 6148 foconst 6687 fconst5 7063 cnvfi 8924 edg0iedg0 27328 edg0usgr 27523 usgr1v0edg 27527 tocyccntz 31313 heicant 35739 |
Copyright terms: Public domain | W3C validator |