MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrn0 Structured version   Visualization version   GIF version

Theorem relrn0 5911
Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
relrn0 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))

Proof of Theorem relrn0
StepHypRef Expression
1 reldm0 5867 . 2 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
2 dm0rn0 5863 . 2 (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
31, 2bitrdi 287 1 (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  c0 4280  dom cdm 5614  ran crn 5615  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  cnvsn0  6157  coeq0  6203  foconst  6750  fconst5  7140  cnvfi  9085  edg0iedg0  29033  edg0usgr  29231  usgr1v0edg  29235  tocyccntz  33113  1arithidom  33502  heicant  37705  tfsconcat00  43450
  Copyright terms: Public domain W3C validator