![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cossxp | Structured version Visualization version GIF version |
Description: Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
cossxp | ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6112 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relssdmrn 6272 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
4 | dmcoss 5973 | . . 3 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | rncoss 5974 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
6 | xpss12 5692 | . . 3 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴)) | |
7 | 4, 5, 6 | mp2an 690 | . 2 ⊢ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴) |
8 | 3, 7 | sstri 3987 | 1 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3945 × cxp 5675 dom cdm 5677 ran crn 5678 ∘ ccom 5681 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 |
This theorem is referenced by: coexg 7935 tposssxp 8234 metustexhalf 24495 rtrclex 43112 trclexi 43115 rtrclexi 43116 cnvtrcl0 43121 |
Copyright terms: Public domain | W3C validator |