![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cossxp | Structured version Visualization version GIF version |
Description: Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
cossxp | ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6061 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relssdmrn 6221 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
4 | dmcoss 5927 | . . 3 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | rncoss 5928 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
6 | xpss12 5649 | . . 3 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴)) | |
7 | 4, 5, 6 | mp2an 691 | . 2 ⊢ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴) |
8 | 3, 7 | sstri 3954 | 1 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3911 × cxp 5632 dom cdm 5634 ran crn 5635 ∘ ccom 5638 Rel wrel 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 |
This theorem is referenced by: coexg 7867 tposssxp 8162 metustexhalf 23928 rtrclex 41977 trclexi 41980 rtrclexi 41981 cnvtrcl0 41986 |
Copyright terms: Public domain | W3C validator |