| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cossxp | Structured version Visualization version GIF version | ||
| Description: Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| cossxp | ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6057 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | relssdmrn 6216 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
| 4 | dmcoss 5914 | . . 3 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
| 5 | rncoss 5916 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
| 6 | xpss12 5631 | . . 3 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴)) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴) |
| 8 | 3, 7 | sstri 3944 | 1 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 × cxp 5614 dom cdm 5616 ran crn 5617 ∘ ccom 5620 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: coexg 7859 tposssxp 8160 metustexhalf 24469 rtrclex 43649 trclexi 43652 rtrclexi 43653 cnvtrcl0 43658 |
| Copyright terms: Public domain | W3C validator |