MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cossxp Structured version   Visualization version   GIF version

Theorem cossxp 6224
Description: Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
cossxp (𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)

Proof of Theorem cossxp
StepHypRef Expression
1 relco 6063 . . 3 Rel (𝐴𝐵)
2 relssdmrn 6221 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
4 dmcoss 5920 . . 3 dom (𝐴𝐵) ⊆ dom 𝐵
5 rncoss 5922 . . 3 ran (𝐴𝐵) ⊆ ran 𝐴
6 xpss12 5638 . . 3 ((dom (𝐴𝐵) ⊆ dom 𝐵 ∧ ran (𝐴𝐵) ⊆ ran 𝐴) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ⊆ (dom 𝐵 × ran 𝐴))
74, 5, 6mp2an 692 . 2 (dom (𝐴𝐵) × ran (𝐴𝐵)) ⊆ (dom 𝐵 × ran 𝐴)
83, 7sstri 3947 1 (𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3905   × cxp 5621  dom cdm 5623  ran crn 5624  ccom 5627  Rel wrel 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634
This theorem is referenced by:  coexg  7869  tposssxp  8170  metustexhalf  24460  rtrclex  43590  trclexi  43593  rtrclexi  43594  cnvtrcl0  43599
  Copyright terms: Public domain W3C validator