MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cossxp Structured version   Visualization version   GIF version

Theorem cossxp 6224
Description: Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
cossxp (𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)

Proof of Theorem cossxp
StepHypRef Expression
1 relco 6061 . . 3 Rel (𝐴𝐵)
2 relssdmrn 6221 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
31, 2ax-mp 5 . 2 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
4 dmcoss 5918 . . 3 dom (𝐴𝐵) ⊆ dom 𝐵
5 rncoss 5920 . . 3 ran (𝐴𝐵) ⊆ ran 𝐴
6 xpss12 5634 . . 3 ((dom (𝐴𝐵) ⊆ dom 𝐵 ∧ ran (𝐴𝐵) ⊆ ran 𝐴) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ⊆ (dom 𝐵 × ran 𝐴))
74, 5, 6mp2an 692 . 2 (dom (𝐴𝐵) × ran (𝐴𝐵)) ⊆ (dom 𝐵 × ran 𝐴)
83, 7sstri 3940 1 (𝐴𝐵) ⊆ (dom 𝐵 × ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3898   × cxp 5617  dom cdm 5619  ran crn 5620  ccom 5623  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630
This theorem is referenced by:  coexg  7865  tposssxp  8166  metustexhalf  24472  rtrclex  43734  trclexi  43737  rtrclexi  43738  cnvtrcl0  43743
  Copyright terms: Public domain W3C validator