Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetainflem4 Structured version   Visualization version   GIF version

Theorem noetainflem4 33943
Description: Lemma for noeta 33946. If 𝐴 precedes 𝐵, then 𝑊 is greater than 𝐴. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝐴,𝑎   𝑎,𝑏,𝑔,𝑥,𝐵   𝑣,𝑏,𝑥,𝑦   𝑇,𝑏,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔,𝑏)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑎)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏)

Proof of Theorem noetainflem4
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 774 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 No )
2 simplrr 775 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 ∈ V)
3 simpll 764 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 No )
43sselda 3921 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎 No )
5 noetainflem.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
65noinfbnd2 33934 . . . . 5 ((𝐵 No 𝐵 ∈ V ∧ 𝑎 No ) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
71, 2, 4, 6syl3anc 1370 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
8 simplll 772 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐴 No )
9 simprl 768 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝐴)
108, 9sseldd 3922 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 No )
11 nodmord 33856 . . . . . . . . . 10 (𝑎 No → Ord dom 𝑎)
12 ordirr 6284 . . . . . . . . . 10 (Ord dom 𝑎 → ¬ dom 𝑎 ∈ dom 𝑎)
1310, 11, 123syl 18 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 ∈ dom 𝑎)
14 bdayval 33851 . . . . . . . . . . . . . . 15 (𝑎 No → ( bday 𝑎) = dom 𝑎)
1510, 14syl 17 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) = dom 𝑎)
16 bdayfo 33880 . . . . . . . . . . . . . . . 16 bday : No onto→On
17 fofn 6690 . . . . . . . . . . . . . . . 16 ( bday : No onto→On → bday Fn No )
1816, 17ax-mp 5 . . . . . . . . . . . . . . 15 bday Fn No
19 fnfvima 7109 . . . . . . . . . . . . . . 15 (( bday Fn No 𝐴 No 𝑎𝐴) → ( bday 𝑎) ∈ ( bday 𝐴))
2018, 8, 9, 19mp3an2i 1465 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) ∈ ( bday 𝐴))
2115, 20eqeltrrd 2840 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ ( bday 𝐴))
22 elssuni 4871 . . . . . . . . . . . . 13 (dom 𝑎 ∈ ( bday 𝐴) → dom 𝑎 ( bday 𝐴))
2321, 22syl 17 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ( bday 𝐴))
24 nodmon 33853 . . . . . . . . . . . . 13 (𝑎 No → dom 𝑎 ∈ On)
25 imassrn 5980 . . . . . . . . . . . . . . . 16 ( bday 𝐴) ⊆ ran bday
26 forn 6691 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → ran bday = On)
2716, 26ax-mp 5 . . . . . . . . . . . . . . . 16 ran bday = On
2825, 27sseqtri 3957 . . . . . . . . . . . . . . 15 ( bday 𝐴) ⊆ On
29 ssorduni 7629 . . . . . . . . . . . . . . 15 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
3028, 29ax-mp 5 . . . . . . . . . . . . . 14 Ord ( bday 𝐴)
31 ordsssuc 6352 . . . . . . . . . . . . . 14 ((dom 𝑎 ∈ On ∧ Ord ( bday 𝐴)) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3230, 31mpan2 688 . . . . . . . . . . . . 13 (dom 𝑎 ∈ On → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3310, 24, 323syl 18 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3423, 33mpbid 231 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ suc ( bday 𝐴))
35 elun2 4111 . . . . . . . . . . 11 (dom 𝑎 ∈ suc ( bday 𝐴) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
3634, 35syl 17 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
37 eleq2 2827 . . . . . . . . . 10 (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → (dom 𝑎 ∈ dom 𝑎 ↔ dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴))))
3836, 37syl5ibrcom 246 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → dom 𝑎 ∈ dom 𝑎))
3913, 38mtod 197 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
40 dmeq 5812 . . . . . . . . 9 (𝑎 = 𝑊 → dom 𝑎 = dom 𝑊)
41 noetainflem.2 . . . . . . . . . . 11 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
4241dmeqi 5813 . . . . . . . . . 10 dom 𝑊 = dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
43 dmun 5819 . . . . . . . . . 10 dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
44 2oex 8308 . . . . . . . . . . . . . 14 2o ∈ V
4544snnz 4712 . . . . . . . . . . . . 13 {2o} ≠ ∅
46 dmxp 5838 . . . . . . . . . . . . 13 ({2o} ≠ ∅ → dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇))
4745, 46ax-mp 5 . . . . . . . . . . . 12 dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇)
4847uneq2i 4094 . . . . . . . . . . 11 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇))
49 undif2 4410 . . . . . . . . . . 11 (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇)) = (dom 𝑇 ∪ suc ( bday 𝐴))
5048, 49eqtri 2766 . . . . . . . . . 10 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ suc ( bday 𝐴))
5142, 43, 503eqtri 2770 . . . . . . . . 9 dom 𝑊 = (dom 𝑇 ∪ suc ( bday 𝐴))
5240, 51eqtrdi 2794 . . . . . . . 8 (𝑎 = 𝑊 → dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
5339, 52nsyl 140 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ 𝑎 = 𝑊)
5453neqned 2950 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝑊)
55 simpr 485 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
5610adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 No )
5756adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 No )
58 simp-4r 781 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐴 ∈ V)
59 simplrl 774 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 No )
6059adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 No )
61 simplrr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 ∈ V)
6261adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 ∈ V)
635, 41noetainflem1 33940 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
6458, 60, 62, 63syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑊 No )
6564adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑊 No )
66 simplr 766 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎𝑊)
67 nosepne 33883 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6857, 65, 66, 67syl3anc 1370 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6955fvresd 6794 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
70 simp-4r 781 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝐵 No 𝐵 ∈ V))
715, 41noetainflem2 33941 . . . . . . . . . . . . . . . . . 18 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
7270, 71syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 ↾ dom 𝑇) = 𝑇)
7372fveq1d 6776 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7469, 73eqtr3d 2780 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7568, 74neeqtrd 3013 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7675necomd 2999 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
77 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑇𝑞) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
78 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑎𝑞) = (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7977, 78neeq12d 3005 . . . . . . . . . . . . . 14 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → ((𝑇𝑞) ≠ (𝑎𝑞) ↔ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})))
8079rspcev 3561 . . . . . . . . . . . . 13 (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∧ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
8155, 76, 80syl2anc 584 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
82 df-ne 2944 . . . . . . . . . . . . . . 15 ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
83 fvres 6793 . . . . . . . . . . . . . . . 16 (𝑞 ∈ dom 𝑇 → ((𝑎 ↾ dom 𝑇)‘𝑞) = (𝑎𝑞))
8483neeq2d 3004 . . . . . . . . . . . . . . 15 (𝑞 ∈ dom 𝑇 → ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8582, 84bitr3id 285 . . . . . . . . . . . . . 14 (𝑞 ∈ dom 𝑇 → (¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8685rexbiia 3180 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
87 rexnal 3169 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8886, 87bitr3i 276 . . . . . . . . . . . 12 (∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8981, 88sylib 217 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
9089olcd 871 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
915noinfno 33921 . . . . . . . . . . . . . . . 16 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
9291ad3antlr 728 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑇 No )
9392adantr 481 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑇 No )
94 nofun 33852 . . . . . . . . . . . . . 14 (𝑇 No → Fun 𝑇)
9593, 94syl 17 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun 𝑇)
96 nofun 33852 . . . . . . . . . . . . . 14 (𝑎 No → Fun 𝑎)
97 funres 6476 . . . . . . . . . . . . . 14 (Fun 𝑎 → Fun (𝑎 ↾ dom 𝑇))
9857, 96, 973syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun (𝑎 ↾ dom 𝑇))
99 eqfunfv 6914 . . . . . . . . . . . . 13 ((Fun 𝑇 ∧ Fun (𝑎 ↾ dom 𝑇)) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
10095, 98, 99syl2anc 584 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
101 ianor 979 . . . . . . . . . . . . 13 (¬ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
102101con1bii 357 . . . . . . . . . . . 12 (¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
103100, 102bitr4di 289 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ ¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
104103con2bid 355 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ ¬ 𝑇 = (𝑎 ↾ dom 𝑇)))
10590, 104mpbid 231 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 = (𝑎 ↾ dom 𝑇))
106105pm2.21d 121 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
10772breq2d 5086 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ (𝑎 ↾ dom 𝑇) <s 𝑇))
108 nodmon 33853 . . . . . . . . . . . 12 (𝑇 No → dom 𝑇 ∈ On)
10992, 108syl 17 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → dom 𝑇 ∈ On)
110109adantr 481 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → dom 𝑇 ∈ On)
111 sltres 33865 . . . . . . . . . 10 ((𝑎 No 𝑊 No ∧ dom 𝑇 ∈ On) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
11257, 65, 110, 111syl3anc 1370 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
113107, 112sylbird 259 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s 𝑇𝑎 <s 𝑊))
114 simplrr 775 . . . . . . . . . 10 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
115114adantr 481 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
116 noreson 33863 . . . . . . . . . . . . 13 ((𝑎 No ∧ dom 𝑇 ∈ On) → (𝑎 ↾ dom 𝑇) ∈ No )
11756, 109, 116syl2anc 584 . . . . . . . . . . . 12 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (𝑎 ↾ dom 𝑇) ∈ No )
118117adantr 481 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 ↾ dom 𝑇) ∈ No )
119 sltso 33879 . . . . . . . . . . . 12 <s Or No
120 sotric 5531 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
121119, 120mpan 687 . . . . . . . . . . 11 ((𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
12293, 118, 121syl2anc 584 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
123122con2bid 355 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇) ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
124115, 123mpbird 256 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇))
125106, 113, 124mpjaod 857 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 <s 𝑊)
12664adantr 481 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊 No )
12756adantr 481 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 No )
128 simplr 766 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝑊)
129128necomd 2999 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊𝑎)
13041fveq1i 6775 . . . . . . . . 9 (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
13192adantr 481 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 No )
132131, 94syl 17 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → Fun 𝑇)
133132funfnd 6465 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 Fn dom 𝑇)
134 fnconstg 6662 . . . . . . . . . . . . 13 (2o ∈ V → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
13544, 134ax-mp 5 . . . . . . . . . . . 12 ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇)
136135a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
137 disjdif 4405 . . . . . . . . . . . 12 (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅
138137a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅)
139 nosepssdm 33889 . . . . . . . . . . . . . 14 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
140127, 126, 128, 139syl3anc 1370 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
141127, 14syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) = dom 𝑎)
142 simp-5l 782 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝐴 No )
143 simplrl 774 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝐴)
144143adantr 481 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝐴)
14518, 142, 144, 19mp3an2i 1465 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ∈ ( bday 𝐴))
146 elssuni 4871 . . . . . . . . . . . . . . . 16 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ⊆ ( bday 𝐴))
147145, 146syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ⊆ ( bday 𝐴))
148141, 147eqsstrrd 3960 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ( bday 𝐴))
149127, 24, 323syl 18 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
150148, 149mpbid 231 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ∈ suc ( bday 𝐴))
151 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝑊)
152 nosepon 33868 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
15356, 64, 151, 152syl3anc 1370 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
154153adantr 481 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
155 eloni 6276 . . . . . . . . . . . . . 14 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
156 ordsuc 7661 . . . . . . . . . . . . . . . 16 (Ord ( bday 𝐴) ↔ Ord suc ( bday 𝐴))
15730, 156mpbi 229 . . . . . . . . . . . . . . 15 Ord suc ( bday 𝐴)
158 ordtr2 6310 . . . . . . . . . . . . . . 15 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord suc ( bday 𝐴)) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
159157, 158mpan2 688 . . . . . . . . . . . . . 14 (Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
160154, 155, 1593syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
161140, 150, 160mp2and 696 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴))
162 ontri1 6300 . . . . . . . . . . . . . 14 ((dom 𝑇 ∈ On ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
163109, 153, 162syl2anc 584 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
164163biimpa 477 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
165161, 164eldifd 3898 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇))
166133, 136, 138, 165fvun2d 6862 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
16744fvconst2 7079 . . . . . . . . . . 11 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
168165, 167syl 17 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
169166, 168eqtrd 2778 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
170130, 169eqtrid 2790 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
171 nosep2o 33885 . . . . . . . 8 (((𝑊 No 𝑎 No 𝑊𝑎) ∧ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o) → 𝑎 <s 𝑊)
172126, 127, 129, 170, 171syl31anc 1372 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 <s 𝑊)
173153, 155syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
174 nodmord 33856 . . . . . . . . 9 (𝑇 No → Ord dom 𝑇)
17592, 174syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord dom 𝑇)
176 ordtri2or 6361 . . . . . . . 8 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord dom 𝑇) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
177173, 175, 176syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
178125, 172, 177mpjaodan 956 . . . . . 6 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 <s 𝑊)
17954, 178mpdan 684 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 <s 𝑊)
180179expr 457 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (¬ 𝑇 <s (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
1817, 180sylbid 239 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏𝑎 <s 𝑊))
182181ralimdva 3108 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴 𝑎 <s 𝑊))
1831823impia 1116 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  ifcif 4459  {csn 4561  cop 4567   cuni 4839   cint 4879   class class class wbr 5074  cmpt 5157   Or wor 5502   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Ord word 6265  Oncon0 6266  suc csuc 6268  cio 6389  Fun wfun 6427   Fn wfn 6428  ontowfo 6431  cfv 6433  crio 7231  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844   bday cbday 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  noetalem1  33944
  Copyright terms: Public domain W3C validator