Step | Hyp | Ref
| Expression |
1 | | simplrl 773 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝐵 ⊆ No
) |
2 | | simplrr 774 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝐵 ∈ V) |
3 | | simpll 763 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → 𝐴 ⊆ No
) |
4 | 3 | sselda 3917 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ No
) |
5 | | noetainflem.1 |
. . . . . 6
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
6 | 5 | noinfbnd2 33861 |
. . . . 5
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈ V
∧ 𝑎 ∈ No ) → (∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) |
7 | 1, 2, 4, 6 | syl3anc 1369 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → (∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) |
8 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐴 ⊆ No
) |
9 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 ∈ 𝐴) |
10 | 8, 9 | sseldd 3918 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 ∈ No
) |
11 | | nodmord 33783 |
. . . . . . . . . 10
⊢ (𝑎 ∈
No → Ord dom 𝑎) |
12 | | ordirr 6269 |
. . . . . . . . . 10
⊢ (Ord dom
𝑎 → ¬ dom 𝑎 ∈ dom 𝑎) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 ∈ dom 𝑎) |
14 | | bdayval 33778 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈
No → ( bday ‘𝑎) = dom 𝑎) |
15 | 10, 14 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday
‘𝑎) = dom
𝑎) |
16 | | bdayfo 33807 |
. . . . . . . . . . . . . . . 16
⊢ bday : No –onto→On |
17 | | fofn 6674 |
. . . . . . . . . . . . . . . 16
⊢ ( bday : No –onto→On → bday
Fn No ) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ bday Fn No
|
19 | | fnfvima 7091 |
. . . . . . . . . . . . . . 15
⊢ (( bday Fn No ∧ 𝐴 ⊆
No ∧ 𝑎 ∈
𝐴) → ( bday ‘𝑎) ∈ ( bday
“ 𝐴)) |
20 | 18, 8, 9, 19 | mp3an2i 1464 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday
‘𝑎) ∈
( bday “ 𝐴)) |
21 | 15, 20 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ ( bday
“ 𝐴)) |
22 | | elssuni 4868 |
. . . . . . . . . . . . 13
⊢ (dom
𝑎 ∈ ( bday “ 𝐴) → dom 𝑎 ⊆ ∪ ( bday “ 𝐴)) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ⊆ ∪ ( bday “ 𝐴)) |
24 | | nodmon 33780 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈
No → dom 𝑎
∈ On) |
25 | | imassrn 5969 |
. . . . . . . . . . . . . . . 16
⊢ ( bday “ 𝐴) ⊆ ran bday
|
26 | | forn 6675 |
. . . . . . . . . . . . . . . . 17
⊢ ( bday : No –onto→On → ran
bday = On) |
27 | 16, 26 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ran bday = On |
28 | 25, 27 | sseqtri 3953 |
. . . . . . . . . . . . . . 15
⊢ ( bday “ 𝐴) ⊆ On |
29 | | ssorduni 7606 |
. . . . . . . . . . . . . . 15
⊢ (( bday “ 𝐴) ⊆ On → Ord ∪ ( bday “ 𝐴)) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ Ord ∪ ( bday “ 𝐴) |
31 | | ordsssuc 6337 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝑎 ∈ On ∧ Ord ∪ ( bday “ 𝐴)) → (dom 𝑎 ⊆ ∪ ( bday “ 𝐴) ↔ dom 𝑎 ∈ suc ∪
( bday “ 𝐴))) |
32 | 30, 31 | mpan2 687 |
. . . . . . . . . . . . 13
⊢ (dom
𝑎 ∈ On → (dom
𝑎 ⊆ ∪ ( bday “ 𝐴) ↔ dom 𝑎 ∈ suc ∪
( bday “ 𝐴))) |
33 | 10, 24, 32 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 ⊆ ∪ ( bday “ 𝐴) ↔ dom 𝑎 ∈ suc ∪
( bday “ 𝐴))) |
34 | 23, 33 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ suc ∪
( bday “ 𝐴)) |
35 | | elun2 4107 |
. . . . . . . . . . 11
⊢ (dom
𝑎 ∈ suc ∪ ( bday “ 𝐴) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ∪
( bday “ 𝐴))) |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ∪
( bday “ 𝐴))) |
37 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (dom
𝑎 = (dom 𝑇 ∪ suc ∪
( bday “ 𝐴)) → (dom 𝑎 ∈ dom 𝑎 ↔ dom 𝑎 ∈ (dom 𝑇 ∪ suc ∪
( bday “ 𝐴)))) |
38 | 36, 37 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 = (dom 𝑇 ∪ suc ∪
( bday “ 𝐴)) → dom 𝑎 ∈ dom 𝑎)) |
39 | 13, 38 | mtod 197 |
. . . . . . . 8
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 = (dom 𝑇 ∪ suc ∪
( bday “ 𝐴))) |
40 | | dmeq 5801 |
. . . . . . . . 9
⊢ (𝑎 = 𝑊 → dom 𝑎 = dom 𝑊) |
41 | | noetainflem.2 |
. . . . . . . . . . 11
⊢ 𝑊 = (𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
42 | 41 | dmeqi 5802 |
. . . . . . . . . 10
⊢ dom 𝑊 = dom (𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
43 | | dmun 5808 |
. . . . . . . . . 10
⊢ dom
(𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
44 | | 2oex 8284 |
. . . . . . . . . . . . . 14
⊢
2o ∈ V |
45 | 44 | snnz 4709 |
. . . . . . . . . . . . 13
⊢
{2o} ≠ ∅ |
46 | | dmxp 5827 |
. . . . . . . . . . . . 13
⊢
({2o} ≠ ∅ → dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) = (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
47 | 45, 46 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ dom ((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) = (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) |
48 | 47 | uneq2i 4090 |
. . . . . . . . . . 11
⊢ (dom
𝑇 ∪ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
49 | | undif2 4407 |
. . . . . . . . . . 11
⊢ (dom
𝑇 ∪ (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) = (dom 𝑇 ∪ suc ∪
( bday “ 𝐴)) |
50 | 48, 49 | eqtri 2766 |
. . . . . . . . . 10
⊢ (dom
𝑇 ∪ dom ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ suc ∪ ( bday “ 𝐴)) |
51 | 42, 43, 50 | 3eqtri 2770 |
. . . . . . . . 9
⊢ dom 𝑊 = (dom 𝑇 ∪ suc ∪
( bday “ 𝐴)) |
52 | 40, 51 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑎 = 𝑊 → dom 𝑎 = (dom 𝑇 ∪ suc ∪
( bday “ 𝐴))) |
53 | 39, 52 | nsyl 140 |
. . . . . . 7
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ 𝑎 = 𝑊) |
54 | 53 | neqned 2949 |
. . . . . 6
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 ≠ 𝑊) |
55 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) |
56 | 10 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝑎 ∈ No
) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → 𝑎 ∈ No
) |
58 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝐴 ∈ V) |
59 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 ⊆ No
) |
60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝐵 ⊆ No
) |
61 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 ∈ V) |
62 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝐵 ∈ V) |
63 | 5, 41 | noetainflem1 33867 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆
No ∧ 𝐵 ∈
V) → 𝑊 ∈ No ) |
64 | 58, 60, 62, 63 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝑊 ∈ No
) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → 𝑊 ∈ No
) |
66 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → 𝑎 ≠ 𝑊) |
67 | | nosepne 33810 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈
No ∧ 𝑊 ∈
No ∧ 𝑎 ≠ 𝑊) → (𝑎‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) ≠ (𝑊‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
68 | 57, 65, 66, 67 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑎‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) ≠ (𝑊‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
69 | 55 | fvresd 6776 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = (𝑊‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
70 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝐵 ⊆ No
∧ 𝐵 ∈
V)) |
71 | 5, 41 | noetainflem2 33868 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → (𝑊 ↾ dom
𝑇) = 𝑇) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑊 ↾ dom 𝑇) = 𝑇) |
73 | 72 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = (𝑇‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
74 | 69, 73 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑊‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = (𝑇‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
75 | 68, 74 | neeqtrd 3012 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑎‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) ≠ (𝑇‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
76 | 75 | necomd 2998 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑇‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) ≠ (𝑎‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
77 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} → (𝑇‘𝑞) = (𝑇‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
78 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} → (𝑎‘𝑞) = (𝑎‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
79 | 77, 78 | neeq12d 3004 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} → ((𝑇‘𝑞) ≠ (𝑎‘𝑞) ↔ (𝑇‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) ≠ (𝑎‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}))) |
80 | 79 | rspcev 3552 |
. . . . . . . . . . . . 13
⊢ ((∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇 ∧ (𝑇‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) ≠ (𝑎‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) → ∃𝑞 ∈ dom 𝑇(𝑇‘𝑞) ≠ (𝑎‘𝑞)) |
81 | 55, 76, 80 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ∃𝑞 ∈ dom 𝑇(𝑇‘𝑞) ≠ (𝑎‘𝑞)) |
82 | | df-ne 2943 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇‘𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ (𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) |
83 | | fvres 6775 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ dom 𝑇 → ((𝑎 ↾ dom 𝑇)‘𝑞) = (𝑎‘𝑞)) |
84 | 83 | neeq2d 3003 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ dom 𝑇 → ((𝑇‘𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇‘𝑞) ≠ (𝑎‘𝑞))) |
85 | 82, 84 | bitr3id 284 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ dom 𝑇 → (¬ (𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇‘𝑞) ≠ (𝑎‘𝑞))) |
86 | 85 | rexbiia 3176 |
. . . . . . . . . . . . 13
⊢
(∃𝑞 ∈ dom
𝑇 ¬ (𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ∃𝑞 ∈ dom 𝑇(𝑇‘𝑞) ≠ (𝑎‘𝑞)) |
87 | | rexnal 3165 |
. . . . . . . . . . . . 13
⊢
(∃𝑞 ∈ dom
𝑇 ¬ (𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) |
88 | 86, 87 | bitr3i 276 |
. . . . . . . . . . . 12
⊢
(∃𝑞 ∈ dom
𝑇(𝑇‘𝑞) ≠ (𝑎‘𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) |
89 | 81, 88 | sylib 217 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) |
90 | 89 | olcd 870 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))) |
91 | 5 | noinfno 33848 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
V) → 𝑇 ∈ No ) |
92 | 91 | ad3antlr 727 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝑇 ∈ No
) |
93 | 92 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → 𝑇 ∈ No
) |
94 | | nofun 33779 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈
No → Fun 𝑇) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → Fun 𝑇) |
96 | | nofun 33779 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈
No → Fun 𝑎) |
97 | | funres 6460 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝑎 → Fun (𝑎 ↾ dom 𝑇)) |
98 | 57, 96, 97 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → Fun (𝑎 ↾ dom 𝑇)) |
99 | | eqfunfv 6896 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑇 ∧ Fun (𝑎 ↾ dom 𝑇)) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))) |
100 | 95, 98, 99 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))) |
101 | | ianor 978 |
. . . . . . . . . . . . 13
⊢ (¬
(dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))) |
102 | 101 | con1bii 356 |
. . . . . . . . . . . 12
⊢ (¬
(¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))) |
103 | 100, 102 | bitr4di 288 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ ¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))) |
104 | 103 | con2bid 354 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ((¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇‘𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ ¬ 𝑇 = (𝑎 ↾ dom 𝑇))) |
105 | 90, 104 | mpbid 231 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ¬ 𝑇 = (𝑎 ↾ dom 𝑇)) |
106 | 105 | pm2.21d 121 |
. . . . . . . 8
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊)) |
107 | 72 | breq2d 5082 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ (𝑎 ↾ dom 𝑇) <s 𝑇)) |
108 | | nodmon 33780 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈
No → dom 𝑇
∈ On) |
109 | 92, 108 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → dom 𝑇 ∈ On) |
110 | 109 | adantr 480 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → dom 𝑇 ∈ On) |
111 | | sltres 33792 |
. . . . . . . . . 10
⊢ ((𝑎 ∈
No ∧ 𝑊 ∈
No ∧ dom 𝑇 ∈ On) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊)) |
112 | 57, 65, 110, 111 | syl3anc 1369 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊)) |
113 | 107, 112 | sylbird 259 |
. . . . . . . 8
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s 𝑇 → 𝑎 <s 𝑊)) |
114 | | simplrr 774 |
. . . . . . . . . 10
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)) |
115 | 114 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)) |
116 | | noreson 33790 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈
No ∧ dom 𝑇
∈ On) → (𝑎
↾ dom 𝑇) ∈ No ) |
117 | 56, 109, 116 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → (𝑎 ↾ dom 𝑇) ∈ No
) |
118 | 117 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑎 ↾ dom 𝑇) ∈ No
) |
119 | | sltso 33806 |
. . . . . . . . . . . 12
⊢ <s Or
No |
120 | | sotric 5522 |
. . . . . . . . . . . 12
⊢ (( <s
Or No ∧ (𝑇 ∈ No
∧ (𝑎 ↾ dom 𝑇) ∈
No )) → (𝑇
<s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇))) |
121 | 119, 120 | mpan 686 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈
No ∧ (𝑎 ↾
dom 𝑇) ∈ No ) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇))) |
122 | 93, 118, 121 | syl2anc 583 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇))) |
123 | 122 | con2bid 354 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → ((𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇) ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) |
124 | 115, 123 | mpbird 256 |
. . . . . . . 8
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)) |
125 | 106, 113,
124 | mpjaod 856 |
. . . . . . 7
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) → 𝑎 <s 𝑊) |
126 | 64 | adantr 480 |
. . . . . . . 8
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑊 ∈ No
) |
127 | 56 | adantr 480 |
. . . . . . . 8
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑎 ∈ No
) |
128 | | simplr 765 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑎 ≠ 𝑊) |
129 | 128 | necomd 2998 |
. . . . . . . 8
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑊 ≠ 𝑎) |
130 | 41 | fveq1i 6757 |
. . . . . . . . 9
⊢ (𝑊‘∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = ((𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}))‘∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) |
131 | 92 | adantr 480 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑇 ∈ No
) |
132 | 131, 94 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → Fun 𝑇) |
133 | 132 | funfnd 6449 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑇 Fn dom 𝑇) |
134 | | fnconstg 6646 |
. . . . . . . . . . . . 13
⊢
(2o ∈ V → ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
135 | 44, 134 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((suc
∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) |
136 | 135 | a1i 11 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) |
137 | | disjdif 4402 |
. . . . . . . . . . . 12
⊢ (dom
𝑇 ∩ (suc ∪ ( bday “ 𝐴) ∖ dom 𝑇)) = ∅ |
138 | 137 | a1i 11 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → (dom 𝑇 ∩ (suc ∪
( bday “ 𝐴) ∖ dom 𝑇)) = ∅) |
139 | | nosepssdm 33816 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈
No ∧ 𝑊 ∈
No ∧ 𝑎 ≠ 𝑊) → ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ⊆ dom 𝑎) |
140 | 127, 126,
128, 139 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ⊆ dom 𝑎) |
141 | 127, 14 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ( bday
‘𝑎) = dom
𝑎) |
142 | | simp-5l 781 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝐴 ⊆ No
) |
143 | | simplrl 773 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝑎 ∈ 𝐴) |
144 | 143 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑎 ∈ 𝐴) |
145 | 18, 142, 144, 19 | mp3an2i 1464 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ( bday
‘𝑎) ∈
( bday “ 𝐴)) |
146 | | elssuni 4868 |
. . . . . . . . . . . . . . . 16
⊢ (( bday ‘𝑎) ∈ ( bday
“ 𝐴) → ( bday ‘𝑎) ⊆ ∪ ( bday “ 𝐴)) |
147 | 145, 146 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ( bday
‘𝑎) ⊆
∪ ( bday “ 𝐴)) |
148 | 141, 147 | eqsstrrd 3956 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → dom 𝑎 ⊆ ∪ ( bday “ 𝐴)) |
149 | 127, 24, 32 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → (dom 𝑎 ⊆ ∪ ( bday “ 𝐴) ↔ dom 𝑎 ∈ suc ∪
( bday “ 𝐴))) |
150 | 148, 149 | mpbid 231 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → dom 𝑎 ∈ suc ∪
( bday “ 𝐴)) |
151 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝑎 ≠ 𝑊) |
152 | | nosepon 33795 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈
No ∧ 𝑊 ∈
No ∧ 𝑎 ≠ 𝑊) → ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ On) |
153 | 56, 64, 151, 152 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ On) |
154 | 153 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ On) |
155 | | eloni 6261 |
. . . . . . . . . . . . . 14
⊢ (∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ On → Ord ∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) |
156 | | ordsuc 7636 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
∪ ( bday “ 𝐴) ↔ Ord suc ∪ ( bday “ 𝐴)) |
157 | 30, 156 | mpbi 229 |
. . . . . . . . . . . . . . 15
⊢ Ord suc
∪ ( bday “ 𝐴) |
158 | | ordtr2 6295 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∧ Ord suc ∪
( bday “ 𝐴)) → ((∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ∪
( bday “ 𝐴)) → ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ suc ∪
( bday “ 𝐴))) |
159 | 157, 158 | mpan2 687 |
. . . . . . . . . . . . . 14
⊢ (Ord
∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} → ((∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ∪
( bday “ 𝐴)) → ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ suc ∪
( bday “ 𝐴))) |
160 | 154, 155,
159 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ((∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ∪
( bday “ 𝐴)) → ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ suc ∪
( bday “ 𝐴))) |
161 | 140, 150,
160 | mp2and 695 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ suc ∪
( bday “ 𝐴)) |
162 | | ontri1 6285 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝑇 ∈ On ∧ ∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ On) → (dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ↔ ¬ ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇)) |
163 | 109, 153,
162 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → (dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ↔ ¬ ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇)) |
164 | 163 | biimpa 476 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ¬ ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇) |
165 | 161, 164 | eldifd 3894 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ (suc ∪
( bday “ 𝐴) ∖ dom 𝑇)) |
166 | 133, 136,
138, 165 | fvun2d 6844 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ((𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}))‘∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = (((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})‘∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
167 | 44 | fvconst2 7061 |
. . . . . . . . . . 11
⊢ (∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ (suc ∪
( bday “ 𝐴) ∖ dom 𝑇) → (((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o})‘∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = 2o) |
168 | 165, 167 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → (((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})‘∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = 2o) |
169 | 166, 168 | eqtrd 2778 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → ((𝑇 ∪ ((suc ∪
( bday “ 𝐴) ∖ dom 𝑇) × {2o}))‘∩ {𝑝
∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = 2o) |
170 | 130, 169 | syl5eq 2791 |
. . . . . . . 8
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → (𝑊‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = 2o) |
171 | | nosep2o 33812 |
. . . . . . . 8
⊢ (((𝑊 ∈
No ∧ 𝑎 ∈
No ∧ 𝑊 ≠ 𝑎) ∧ (𝑊‘∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) = 2o) → 𝑎 <s 𝑊) |
172 | 126, 127,
129, 170, 171 | syl31anc 1371 |
. . . . . . 7
⊢
((((((𝐴 ⊆
No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) ∧ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) → 𝑎 <s 𝑊) |
173 | 153, 155 | syl 17 |
. . . . . . . 8
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → Ord ∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)}) |
174 | | nodmord 33783 |
. . . . . . . . 9
⊢ (𝑇 ∈
No → Ord dom 𝑇) |
175 | 92, 174 | syl 17 |
. . . . . . . 8
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → Ord dom 𝑇) |
176 | | ordtri2or 6346 |
. . . . . . . 8
⊢ ((Ord
∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∧ Ord dom 𝑇) → (∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
177 | 173, 175,
176 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → (∩
{𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 ⊆ ∩ {𝑝 ∈ On ∣ (𝑎‘𝑝) ≠ (𝑊‘𝑝)})) |
178 | 125, 172,
177 | mpjaodan 955 |
. . . . . 6
⊢
(((((𝐴 ⊆ No ∧ 𝐴 ∈ V) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ V)) ∧
(𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎 ≠ 𝑊) → 𝑎 <s 𝑊) |
179 | 54, 178 | mpdan 683 |
. . . . 5
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ (𝑎 ∈ 𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 <s 𝑊) |
180 | 179 | expr 456 |
. . . 4
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → (¬ 𝑇 <s (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊)) |
181 | 7, 180 | sylbid 239 |
. . 3
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) ∧ 𝑎 ∈ 𝐴) → (∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 → 𝑎 <s 𝑊)) |
182 | 181 | ralimdva 3102 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V)) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑊)) |
183 | 182 | 3impia 1115 |
1
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑊) |