MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem4 Structured version   Visualization version   GIF version

Theorem noetainflem4 27659
Description: Lemma for noeta 27662. If 𝐴 precedes 𝐵, then 𝑊 is greater than 𝐴. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝐴,𝑎   𝑎,𝑏,𝑔,𝑥,𝐵   𝑣,𝑏,𝑥,𝑦   𝑇,𝑏,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔,𝑏)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑎)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏)

Proof of Theorem noetainflem4
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 776 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 No )
2 simplrr 777 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 ∈ V)
3 simpll 766 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 No )
43sselda 3949 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎 No )
5 noetainflem.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
65noinfbnd2 27650 . . . . 5 ((𝐵 No 𝐵 ∈ V ∧ 𝑎 No ) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
71, 2, 4, 6syl3anc 1373 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
8 simplll 774 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐴 No )
9 simprl 770 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝐴)
108, 9sseldd 3950 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 No )
11 nodmord 27572 . . . . . . . . . 10 (𝑎 No → Ord dom 𝑎)
12 ordirr 6353 . . . . . . . . . 10 (Ord dom 𝑎 → ¬ dom 𝑎 ∈ dom 𝑎)
1310, 11, 123syl 18 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 ∈ dom 𝑎)
14 bdayval 27567 . . . . . . . . . . . . . . 15 (𝑎 No → ( bday 𝑎) = dom 𝑎)
1510, 14syl 17 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) = dom 𝑎)
16 bdayfo 27596 . . . . . . . . . . . . . . . 16 bday : No onto→On
17 fofn 6777 . . . . . . . . . . . . . . . 16 ( bday : No onto→On → bday Fn No )
1816, 17ax-mp 5 . . . . . . . . . . . . . . 15 bday Fn No
19 fnfvima 7210 . . . . . . . . . . . . . . 15 (( bday Fn No 𝐴 No 𝑎𝐴) → ( bday 𝑎) ∈ ( bday 𝐴))
2018, 8, 9, 19mp3an2i 1468 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) ∈ ( bday 𝐴))
2115, 20eqeltrrd 2830 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ ( bday 𝐴))
22 elssuni 4904 . . . . . . . . . . . . 13 (dom 𝑎 ∈ ( bday 𝐴) → dom 𝑎 ( bday 𝐴))
2321, 22syl 17 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ( bday 𝐴))
24 nodmon 27569 . . . . . . . . . . . . 13 (𝑎 No → dom 𝑎 ∈ On)
25 imassrn 6045 . . . . . . . . . . . . . . . 16 ( bday 𝐴) ⊆ ran bday
26 forn 6778 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → ran bday = On)
2716, 26ax-mp 5 . . . . . . . . . . . . . . . 16 ran bday = On
2825, 27sseqtri 3998 . . . . . . . . . . . . . . 15 ( bday 𝐴) ⊆ On
29 ssorduni 7758 . . . . . . . . . . . . . . 15 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
3028, 29ax-mp 5 . . . . . . . . . . . . . 14 Ord ( bday 𝐴)
31 ordsssuc 6426 . . . . . . . . . . . . . 14 ((dom 𝑎 ∈ On ∧ Ord ( bday 𝐴)) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3230, 31mpan2 691 . . . . . . . . . . . . 13 (dom 𝑎 ∈ On → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3310, 24, 323syl 18 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3423, 33mpbid 232 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ suc ( bday 𝐴))
35 elun2 4149 . . . . . . . . . . 11 (dom 𝑎 ∈ suc ( bday 𝐴) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
3634, 35syl 17 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
37 eleq2 2818 . . . . . . . . . 10 (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → (dom 𝑎 ∈ dom 𝑎 ↔ dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴))))
3836, 37syl5ibrcom 247 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → dom 𝑎 ∈ dom 𝑎))
3913, 38mtod 198 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
40 dmeq 5870 . . . . . . . . 9 (𝑎 = 𝑊 → dom 𝑎 = dom 𝑊)
41 noetainflem.2 . . . . . . . . . . 11 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
4241dmeqi 5871 . . . . . . . . . 10 dom 𝑊 = dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
43 dmun 5877 . . . . . . . . . 10 dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
44 2oex 8448 . . . . . . . . . . . . . 14 2o ∈ V
4544snnz 4743 . . . . . . . . . . . . 13 {2o} ≠ ∅
46 dmxp 5895 . . . . . . . . . . . . 13 ({2o} ≠ ∅ → dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇))
4745, 46ax-mp 5 . . . . . . . . . . . 12 dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇)
4847uneq2i 4131 . . . . . . . . . . 11 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇))
49 undif2 4443 . . . . . . . . . . 11 (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇)) = (dom 𝑇 ∪ suc ( bday 𝐴))
5048, 49eqtri 2753 . . . . . . . . . 10 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ suc ( bday 𝐴))
5142, 43, 503eqtri 2757 . . . . . . . . 9 dom 𝑊 = (dom 𝑇 ∪ suc ( bday 𝐴))
5240, 51eqtrdi 2781 . . . . . . . 8 (𝑎 = 𝑊 → dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
5339, 52nsyl 140 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ 𝑎 = 𝑊)
5453neqned 2933 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝑊)
55 simpr 484 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
5610adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 No )
5756adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 No )
58 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐴 ∈ V)
59 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 No )
6059adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 No )
61 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 ∈ V)
6261adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 ∈ V)
635, 41noetainflem1 27656 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
6458, 60, 62, 63syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑊 No )
6564adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑊 No )
66 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎𝑊)
67 nosepne 27599 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6857, 65, 66, 67syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6955fvresd 6881 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
70 simp-4r 783 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝐵 No 𝐵 ∈ V))
715, 41noetainflem2 27657 . . . . . . . . . . . . . . . . . 18 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
7270, 71syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 ↾ dom 𝑇) = 𝑇)
7372fveq1d 6863 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7469, 73eqtr3d 2767 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7568, 74neeqtrd 2995 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7675necomd 2981 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
77 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑇𝑞) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
78 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑎𝑞) = (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7977, 78neeq12d 2987 . . . . . . . . . . . . . 14 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → ((𝑇𝑞) ≠ (𝑎𝑞) ↔ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})))
8079rspcev 3591 . . . . . . . . . . . . 13 (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∧ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
8155, 76, 80syl2anc 584 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
82 df-ne 2927 . . . . . . . . . . . . . . 15 ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
83 fvres 6880 . . . . . . . . . . . . . . . 16 (𝑞 ∈ dom 𝑇 → ((𝑎 ↾ dom 𝑇)‘𝑞) = (𝑎𝑞))
8483neeq2d 2986 . . . . . . . . . . . . . . 15 (𝑞 ∈ dom 𝑇 → ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8582, 84bitr3id 285 . . . . . . . . . . . . . 14 (𝑞 ∈ dom 𝑇 → (¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8685rexbiia 3075 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
87 rexnal 3083 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8886, 87bitr3i 277 . . . . . . . . . . . 12 (∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8981, 88sylib 218 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
9089olcd 874 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
915noinfno 27637 . . . . . . . . . . . . . . . 16 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
9291ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑇 No )
9392adantr 480 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑇 No )
94 nofun 27568 . . . . . . . . . . . . . 14 (𝑇 No → Fun 𝑇)
9593, 94syl 17 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun 𝑇)
96 nofun 27568 . . . . . . . . . . . . . 14 (𝑎 No → Fun 𝑎)
97 funres 6561 . . . . . . . . . . . . . 14 (Fun 𝑎 → Fun (𝑎 ↾ dom 𝑇))
9857, 96, 973syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun (𝑎 ↾ dom 𝑇))
99 eqfunfv 7011 . . . . . . . . . . . . 13 ((Fun 𝑇 ∧ Fun (𝑎 ↾ dom 𝑇)) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
10095, 98, 99syl2anc 584 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
101 ianor 983 . . . . . . . . . . . . 13 (¬ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
102101con1bii 356 . . . . . . . . . . . 12 (¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
103100, 102bitr4di 289 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ ¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
104103con2bid 354 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ ¬ 𝑇 = (𝑎 ↾ dom 𝑇)))
10590, 104mpbid 232 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 = (𝑎 ↾ dom 𝑇))
106105pm2.21d 121 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
10772breq2d 5122 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ (𝑎 ↾ dom 𝑇) <s 𝑇))
108 nodmon 27569 . . . . . . . . . . . 12 (𝑇 No → dom 𝑇 ∈ On)
10992, 108syl 17 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → dom 𝑇 ∈ On)
110109adantr 480 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → dom 𝑇 ∈ On)
111 sltres 27581 . . . . . . . . . 10 ((𝑎 No 𝑊 No ∧ dom 𝑇 ∈ On) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
11257, 65, 110, 111syl3anc 1373 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
113107, 112sylbird 260 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s 𝑇𝑎 <s 𝑊))
114 simplrr 777 . . . . . . . . . 10 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
115114adantr 480 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
116 noreson 27579 . . . . . . . . . . . . 13 ((𝑎 No ∧ dom 𝑇 ∈ On) → (𝑎 ↾ dom 𝑇) ∈ No )
11756, 109, 116syl2anc 584 . . . . . . . . . . . 12 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (𝑎 ↾ dom 𝑇) ∈ No )
118117adantr 480 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 ↾ dom 𝑇) ∈ No )
119 sltso 27595 . . . . . . . . . . . 12 <s Or No
120 sotric 5579 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
121119, 120mpan 690 . . . . . . . . . . 11 ((𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
12293, 118, 121syl2anc 584 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
123122con2bid 354 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇) ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
124115, 123mpbird 257 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇))
125106, 113, 124mpjaod 860 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 <s 𝑊)
12664adantr 480 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊 No )
12756adantr 480 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 No )
128 simplr 768 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝑊)
129128necomd 2981 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊𝑎)
13041fveq1i 6862 . . . . . . . . 9 (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
13192adantr 480 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 No )
132131, 94syl 17 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → Fun 𝑇)
133132funfnd 6550 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 Fn dom 𝑇)
134 fnconstg 6751 . . . . . . . . . . . . 13 (2o ∈ V → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
13544, 134ax-mp 5 . . . . . . . . . . . 12 ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇)
136135a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
137 disjdif 4438 . . . . . . . . . . . 12 (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅
138137a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅)
139 nosepssdm 27605 . . . . . . . . . . . . . 14 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
140127, 126, 128, 139syl3anc 1373 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
141127, 14syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) = dom 𝑎)
142 simp-5l 784 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝐴 No )
143 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝐴)
144143adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝐴)
14518, 142, 144, 19mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ∈ ( bday 𝐴))
146 elssuni 4904 . . . . . . . . . . . . . . . 16 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ⊆ ( bday 𝐴))
147145, 146syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ⊆ ( bday 𝐴))
148141, 147eqsstrrd 3985 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ( bday 𝐴))
149127, 24, 323syl 18 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
150148, 149mpbid 232 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ∈ suc ( bday 𝐴))
151 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝑊)
152 nosepon 27584 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
15356, 64, 151, 152syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
154153adantr 480 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
155 eloni 6345 . . . . . . . . . . . . . 14 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
156 ordsuc 7791 . . . . . . . . . . . . . . . 16 (Ord ( bday 𝐴) ↔ Ord suc ( bday 𝐴))
15730, 156mpbi 230 . . . . . . . . . . . . . . 15 Ord suc ( bday 𝐴)
158 ordtr2 6380 . . . . . . . . . . . . . . 15 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord suc ( bday 𝐴)) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
159157, 158mpan2 691 . . . . . . . . . . . . . 14 (Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
160154, 155, 1593syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
161140, 150, 160mp2and 699 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴))
162 ontri1 6369 . . . . . . . . . . . . . 14 ((dom 𝑇 ∈ On ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
163109, 153, 162syl2anc 584 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
164163biimpa 476 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
165161, 164eldifd 3928 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇))
166133, 136, 138, 165fvun2d 6958 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
16744fvconst2 7181 . . . . . . . . . . 11 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
168165, 167syl 17 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
169166, 168eqtrd 2765 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
170130, 169eqtrid 2777 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
171 nosep2o 27601 . . . . . . . 8 (((𝑊 No 𝑎 No 𝑊𝑎) ∧ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o) → 𝑎 <s 𝑊)
172126, 127, 129, 170, 171syl31anc 1375 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 <s 𝑊)
173153, 155syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
174 nodmord 27572 . . . . . . . . 9 (𝑇 No → Ord dom 𝑇)
17592, 174syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord dom 𝑇)
176 ordtri2or 6435 . . . . . . . 8 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord dom 𝑇) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
177173, 175, 176syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
178125, 172, 177mpjaodan 960 . . . . . 6 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 <s 𝑊)
17954, 178mpdan 687 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 <s 𝑊)
180179expr 456 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (¬ 𝑇 <s (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
1817, 180sylbid 240 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏𝑎 <s 𝑊))
182181ralimdva 3146 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴 𝑎 <s 𝑊))
1831823impia 1117 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592  cop 4598   cuni 4874   cint 4913   class class class wbr 5110  cmpt 5191   Or wor 5548   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Ord word 6334  Oncon0 6335  suc csuc 6337  cio 6465  Fun wfun 6508   Fn wfn 6509  ontowfo 6512  cfv 6514  crio 7346  1oc1o 8430  2oc2o 8431   No csur 27558   <s cslt 27559   bday cbday 27560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  noetalem1  27660
  Copyright terms: Public domain W3C validator