MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetainflem4 Structured version   Visualization version   GIF version

Theorem noetainflem4 27685
Description: Lemma for noeta 27688. If 𝐴 precedes 𝐵, then 𝑊 is greater than 𝐴. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝐴,𝑎   𝑎,𝑏,𝑔,𝑥,𝐵   𝑣,𝑏,𝑥,𝑦   𝑇,𝑏,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔,𝑏)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑎)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏)

Proof of Theorem noetainflem4
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 776 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 No )
2 simplrr 777 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 ∈ V)
3 simpll 766 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 No )
43sselda 3943 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎 No )
5 noetainflem.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
65noinfbnd2 27676 . . . . 5 ((𝐵 No 𝐵 ∈ V ∧ 𝑎 No ) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
71, 2, 4, 6syl3anc 1373 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
8 simplll 774 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐴 No )
9 simprl 770 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝐴)
108, 9sseldd 3944 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 No )
11 nodmord 27598 . . . . . . . . . 10 (𝑎 No → Ord dom 𝑎)
12 ordirr 6338 . . . . . . . . . 10 (Ord dom 𝑎 → ¬ dom 𝑎 ∈ dom 𝑎)
1310, 11, 123syl 18 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 ∈ dom 𝑎)
14 bdayval 27593 . . . . . . . . . . . . . . 15 (𝑎 No → ( bday 𝑎) = dom 𝑎)
1510, 14syl 17 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) = dom 𝑎)
16 bdayfo 27622 . . . . . . . . . . . . . . . 16 bday : No onto→On
17 fofn 6756 . . . . . . . . . . . . . . . 16 ( bday : No onto→On → bday Fn No )
1816, 17ax-mp 5 . . . . . . . . . . . . . . 15 bday Fn No
19 fnfvima 7189 . . . . . . . . . . . . . . 15 (( bday Fn No 𝐴 No 𝑎𝐴) → ( bday 𝑎) ∈ ( bday 𝐴))
2018, 8, 9, 19mp3an2i 1468 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) ∈ ( bday 𝐴))
2115, 20eqeltrrd 2829 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ ( bday 𝐴))
22 elssuni 4897 . . . . . . . . . . . . 13 (dom 𝑎 ∈ ( bday 𝐴) → dom 𝑎 ( bday 𝐴))
2321, 22syl 17 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ( bday 𝐴))
24 nodmon 27595 . . . . . . . . . . . . 13 (𝑎 No → dom 𝑎 ∈ On)
25 imassrn 6031 . . . . . . . . . . . . . . . 16 ( bday 𝐴) ⊆ ran bday
26 forn 6757 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → ran bday = On)
2716, 26ax-mp 5 . . . . . . . . . . . . . . . 16 ran bday = On
2825, 27sseqtri 3992 . . . . . . . . . . . . . . 15 ( bday 𝐴) ⊆ On
29 ssorduni 7735 . . . . . . . . . . . . . . 15 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
3028, 29ax-mp 5 . . . . . . . . . . . . . 14 Ord ( bday 𝐴)
31 ordsssuc 6411 . . . . . . . . . . . . . 14 ((dom 𝑎 ∈ On ∧ Ord ( bday 𝐴)) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3230, 31mpan2 691 . . . . . . . . . . . . 13 (dom 𝑎 ∈ On → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3310, 24, 323syl 18 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3423, 33mpbid 232 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ suc ( bday 𝐴))
35 elun2 4142 . . . . . . . . . . 11 (dom 𝑎 ∈ suc ( bday 𝐴) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
3634, 35syl 17 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
37 eleq2 2817 . . . . . . . . . 10 (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → (dom 𝑎 ∈ dom 𝑎 ↔ dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴))))
3836, 37syl5ibrcom 247 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → dom 𝑎 ∈ dom 𝑎))
3913, 38mtod 198 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
40 dmeq 5857 . . . . . . . . 9 (𝑎 = 𝑊 → dom 𝑎 = dom 𝑊)
41 noetainflem.2 . . . . . . . . . . 11 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
4241dmeqi 5858 . . . . . . . . . 10 dom 𝑊 = dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
43 dmun 5864 . . . . . . . . . 10 dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
44 2oex 8422 . . . . . . . . . . . . . 14 2o ∈ V
4544snnz 4736 . . . . . . . . . . . . 13 {2o} ≠ ∅
46 dmxp 5882 . . . . . . . . . . . . 13 ({2o} ≠ ∅ → dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇))
4745, 46ax-mp 5 . . . . . . . . . . . 12 dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇)
4847uneq2i 4124 . . . . . . . . . . 11 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇))
49 undif2 4436 . . . . . . . . . . 11 (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇)) = (dom 𝑇 ∪ suc ( bday 𝐴))
5048, 49eqtri 2752 . . . . . . . . . 10 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ suc ( bday 𝐴))
5142, 43, 503eqtri 2756 . . . . . . . . 9 dom 𝑊 = (dom 𝑇 ∪ suc ( bday 𝐴))
5240, 51eqtrdi 2780 . . . . . . . 8 (𝑎 = 𝑊 → dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
5339, 52nsyl 140 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ 𝑎 = 𝑊)
5453neqned 2932 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝑊)
55 simpr 484 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
5610adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 No )
5756adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 No )
58 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐴 ∈ V)
59 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 No )
6059adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 No )
61 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 ∈ V)
6261adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 ∈ V)
635, 41noetainflem1 27682 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
6458, 60, 62, 63syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑊 No )
6564adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑊 No )
66 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎𝑊)
67 nosepne 27625 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6857, 65, 66, 67syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6955fvresd 6860 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
70 simp-4r 783 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝐵 No 𝐵 ∈ V))
715, 41noetainflem2 27683 . . . . . . . . . . . . . . . . . 18 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
7270, 71syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 ↾ dom 𝑇) = 𝑇)
7372fveq1d 6842 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7469, 73eqtr3d 2766 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7568, 74neeqtrd 2994 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7675necomd 2980 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
77 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑇𝑞) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
78 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑎𝑞) = (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7977, 78neeq12d 2986 . . . . . . . . . . . . . 14 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → ((𝑇𝑞) ≠ (𝑎𝑞) ↔ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})))
8079rspcev 3585 . . . . . . . . . . . . 13 (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∧ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
8155, 76, 80syl2anc 584 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
82 df-ne 2926 . . . . . . . . . . . . . . 15 ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
83 fvres 6859 . . . . . . . . . . . . . . . 16 (𝑞 ∈ dom 𝑇 → ((𝑎 ↾ dom 𝑇)‘𝑞) = (𝑎𝑞))
8483neeq2d 2985 . . . . . . . . . . . . . . 15 (𝑞 ∈ dom 𝑇 → ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8582, 84bitr3id 285 . . . . . . . . . . . . . 14 (𝑞 ∈ dom 𝑇 → (¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8685rexbiia 3074 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
87 rexnal 3082 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8886, 87bitr3i 277 . . . . . . . . . . . 12 (∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8981, 88sylib 218 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
9089olcd 874 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
915noinfno 27663 . . . . . . . . . . . . . . . 16 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
9291ad3antlr 731 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑇 No )
9392adantr 480 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑇 No )
94 nofun 27594 . . . . . . . . . . . . . 14 (𝑇 No → Fun 𝑇)
9593, 94syl 17 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun 𝑇)
96 nofun 27594 . . . . . . . . . . . . . 14 (𝑎 No → Fun 𝑎)
97 funres 6542 . . . . . . . . . . . . . 14 (Fun 𝑎 → Fun (𝑎 ↾ dom 𝑇))
9857, 96, 973syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun (𝑎 ↾ dom 𝑇))
99 eqfunfv 6990 . . . . . . . . . . . . 13 ((Fun 𝑇 ∧ Fun (𝑎 ↾ dom 𝑇)) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
10095, 98, 99syl2anc 584 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
101 ianor 983 . . . . . . . . . . . . 13 (¬ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
102101con1bii 356 . . . . . . . . . . . 12 (¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
103100, 102bitr4di 289 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ ¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
104103con2bid 354 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ ¬ 𝑇 = (𝑎 ↾ dom 𝑇)))
10590, 104mpbid 232 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 = (𝑎 ↾ dom 𝑇))
106105pm2.21d 121 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
10772breq2d 5114 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ (𝑎 ↾ dom 𝑇) <s 𝑇))
108 nodmon 27595 . . . . . . . . . . . 12 (𝑇 No → dom 𝑇 ∈ On)
10992, 108syl 17 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → dom 𝑇 ∈ On)
110109adantr 480 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → dom 𝑇 ∈ On)
111 sltres 27607 . . . . . . . . . 10 ((𝑎 No 𝑊 No ∧ dom 𝑇 ∈ On) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
11257, 65, 110, 111syl3anc 1373 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
113107, 112sylbird 260 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s 𝑇𝑎 <s 𝑊))
114 simplrr 777 . . . . . . . . . 10 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
115114adantr 480 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
116 noreson 27605 . . . . . . . . . . . . 13 ((𝑎 No ∧ dom 𝑇 ∈ On) → (𝑎 ↾ dom 𝑇) ∈ No )
11756, 109, 116syl2anc 584 . . . . . . . . . . . 12 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (𝑎 ↾ dom 𝑇) ∈ No )
118117adantr 480 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 ↾ dom 𝑇) ∈ No )
119 sltso 27621 . . . . . . . . . . . 12 <s Or No
120 sotric 5569 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
121119, 120mpan 690 . . . . . . . . . . 11 ((𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
12293, 118, 121syl2anc 584 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
123122con2bid 354 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇) ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
124115, 123mpbird 257 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇))
125106, 113, 124mpjaod 860 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 <s 𝑊)
12664adantr 480 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊 No )
12756adantr 480 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 No )
128 simplr 768 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝑊)
129128necomd 2980 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊𝑎)
13041fveq1i 6841 . . . . . . . . 9 (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
13192adantr 480 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 No )
132131, 94syl 17 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → Fun 𝑇)
133132funfnd 6531 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 Fn dom 𝑇)
134 fnconstg 6730 . . . . . . . . . . . . 13 (2o ∈ V → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
13544, 134ax-mp 5 . . . . . . . . . . . 12 ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇)
136135a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
137 disjdif 4431 . . . . . . . . . . . 12 (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅
138137a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅)
139 nosepssdm 27631 . . . . . . . . . . . . . 14 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
140127, 126, 128, 139syl3anc 1373 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
141127, 14syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) = dom 𝑎)
142 simp-5l 784 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝐴 No )
143 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝐴)
144143adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝐴)
14518, 142, 144, 19mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ∈ ( bday 𝐴))
146 elssuni 4897 . . . . . . . . . . . . . . . 16 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ⊆ ( bday 𝐴))
147145, 146syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ⊆ ( bday 𝐴))
148141, 147eqsstrrd 3979 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ( bday 𝐴))
149127, 24, 323syl 18 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
150148, 149mpbid 232 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ∈ suc ( bday 𝐴))
151 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝑊)
152 nosepon 27610 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
15356, 64, 151, 152syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
154153adantr 480 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
155 eloni 6330 . . . . . . . . . . . . . 14 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
156 ordsuc 7768 . . . . . . . . . . . . . . . 16 (Ord ( bday 𝐴) ↔ Ord suc ( bday 𝐴))
15730, 156mpbi 230 . . . . . . . . . . . . . . 15 Ord suc ( bday 𝐴)
158 ordtr2 6365 . . . . . . . . . . . . . . 15 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord suc ( bday 𝐴)) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
159157, 158mpan2 691 . . . . . . . . . . . . . 14 (Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
160154, 155, 1593syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
161140, 150, 160mp2and 699 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴))
162 ontri1 6354 . . . . . . . . . . . . . 14 ((dom 𝑇 ∈ On ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
163109, 153, 162syl2anc 584 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
164163biimpa 476 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
165161, 164eldifd 3922 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇))
166133, 136, 138, 165fvun2d 6937 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
16744fvconst2 7160 . . . . . . . . . . 11 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
168165, 167syl 17 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
169166, 168eqtrd 2764 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
170130, 169eqtrid 2776 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
171 nosep2o 27627 . . . . . . . 8 (((𝑊 No 𝑎 No 𝑊𝑎) ∧ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o) → 𝑎 <s 𝑊)
172126, 127, 129, 170, 171syl31anc 1375 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 <s 𝑊)
173153, 155syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
174 nodmord 27598 . . . . . . . . 9 (𝑇 No → Ord dom 𝑇)
17592, 174syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord dom 𝑇)
176 ordtri2or 6420 . . . . . . . 8 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord dom 𝑇) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
177173, 175, 176syl2anc 584 . . . . . . 7 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
178125, 172, 177mpjaodan 960 . . . . . 6 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 <s 𝑊)
17954, 178mpdan 687 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 <s 𝑊)
180179expr 456 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (¬ 𝑇 <s (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
1817, 180sylbid 240 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏𝑎 <s 𝑊))
182181ralimdva 3145 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴 𝑎 <s 𝑊))
1831823impia 1117 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  ifcif 4484  {csn 4585  cop 4591   cuni 4867   cint 4906   class class class wbr 5102  cmpt 5183   Or wor 5538   × cxp 5629  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Ord word 6319  Oncon0 6320  suc csuc 6322  cio 6450  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  cfv 6499  crio 7325  1oc1o 8404  2oc2o 8405   No csur 27584   <s cslt 27585   bday cbday 27586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589
This theorem is referenced by:  noetalem1  27686
  Copyright terms: Public domain W3C validator