Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetainflem4 Structured version   Visualization version   GIF version

Theorem noetainflem4 33528
Description: Lemma for noeta 33531. If 𝐴 precedes 𝐵, then 𝑊 is greater than 𝐴. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetainflem.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetainflem.2 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
Assertion
Ref Expression
noetainflem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝐴,𝑎   𝑎,𝑏,𝑔,𝑥,𝐵   𝑣,𝑏,𝑥,𝑦   𝑇,𝑏,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑔,𝑏)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑎)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏)

Proof of Theorem noetainflem4
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 776 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 No )
2 simplrr 777 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝐵 ∈ V)
3 simpll 766 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 No )
43sselda 3892 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → 𝑎 No )
5 noetainflem.1 . . . . . 6 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
65noinfbnd2 33519 . . . . 5 ((𝐵 No 𝐵 ∈ V ∧ 𝑎 No ) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
71, 2, 4, 6syl3anc 1368 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
8 simplll 774 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐴 No )
9 simprl 770 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝐴)
108, 9sseldd 3893 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 No )
11 nodmord 33441 . . . . . . . . . 10 (𝑎 No → Ord dom 𝑎)
12 ordirr 6187 . . . . . . . . . 10 (Ord dom 𝑎 → ¬ dom 𝑎 ∈ dom 𝑎)
1310, 11, 123syl 18 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 ∈ dom 𝑎)
14 bdayval 33436 . . . . . . . . . . . . . . 15 (𝑎 No → ( bday 𝑎) = dom 𝑎)
1510, 14syl 17 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) = dom 𝑎)
16 bdayfo 33465 . . . . . . . . . . . . . . . 16 bday : No onto→On
17 fofn 6578 . . . . . . . . . . . . . . . 16 ( bday : No onto→On → bday Fn No )
1816, 17ax-mp 5 . . . . . . . . . . . . . . 15 bday Fn No
19 fnfvima 6987 . . . . . . . . . . . . . . 15 (( bday Fn No 𝐴 No 𝑎𝐴) → ( bday 𝑎) ∈ ( bday 𝐴))
2018, 8, 9, 19mp3an2i 1463 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ( bday 𝑎) ∈ ( bday 𝐴))
2115, 20eqeltrrd 2853 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ ( bday 𝐴))
22 elssuni 4830 . . . . . . . . . . . . 13 (dom 𝑎 ∈ ( bday 𝐴) → dom 𝑎 ( bday 𝐴))
2321, 22syl 17 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ( bday 𝐴))
24 nodmon 33438 . . . . . . . . . . . . 13 (𝑎 No → dom 𝑎 ∈ On)
25 imassrn 5912 . . . . . . . . . . . . . . . 16 ( bday 𝐴) ⊆ ran bday
26 forn 6579 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → ran bday = On)
2716, 26ax-mp 5 . . . . . . . . . . . . . . . 16 ran bday = On
2825, 27sseqtri 3928 . . . . . . . . . . . . . . 15 ( bday 𝐴) ⊆ On
29 ssorduni 7499 . . . . . . . . . . . . . . 15 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
3028, 29ax-mp 5 . . . . . . . . . . . . . 14 Ord ( bday 𝐴)
31 ordsssuc 6255 . . . . . . . . . . . . . 14 ((dom 𝑎 ∈ On ∧ Ord ( bday 𝐴)) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3230, 31mpan2 690 . . . . . . . . . . . . 13 (dom 𝑎 ∈ On → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3310, 24, 323syl 18 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
3423, 33mpbid 235 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ suc ( bday 𝐴))
35 elun2 4082 . . . . . . . . . . 11 (dom 𝑎 ∈ suc ( bday 𝐴) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
3634, 35syl 17 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴)))
37 eleq2 2840 . . . . . . . . . 10 (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → (dom 𝑎 ∈ dom 𝑎 ↔ dom 𝑎 ∈ (dom 𝑇 ∪ suc ( bday 𝐴))))
3836, 37syl5ibrcom 250 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → (dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)) → dom 𝑎 ∈ dom 𝑎))
3913, 38mtod 201 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
40 dmeq 5743 . . . . . . . . 9 (𝑎 = 𝑊 → dom 𝑎 = dom 𝑊)
41 noetainflem.2 . . . . . . . . . . 11 𝑊 = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
4241dmeqi 5744 . . . . . . . . . 10 dom 𝑊 = dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
43 dmun 5750 . . . . . . . . . 10 dom (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
44 2oex 8122 . . . . . . . . . . . . . 14 2o ∈ V
4544snnz 4669 . . . . . . . . . . . . 13 {2o} ≠ ∅
46 dmxp 5770 . . . . . . . . . . . . 13 ({2o} ≠ ∅ → dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇))
4745, 46ax-mp 5 . . . . . . . . . . . 12 dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) = (suc ( bday 𝐴) ∖ dom 𝑇)
4847uneq2i 4065 . . . . . . . . . . 11 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇))
49 undif2 4373 . . . . . . . . . . 11 (dom 𝑇 ∪ (suc ( bday 𝐴) ∖ dom 𝑇)) = (dom 𝑇 ∪ suc ( bday 𝐴))
5048, 49eqtri 2781 . . . . . . . . . 10 (dom 𝑇 ∪ dom ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (dom 𝑇 ∪ suc ( bday 𝐴))
5142, 43, 503eqtri 2785 . . . . . . . . 9 dom 𝑊 = (dom 𝑇 ∪ suc ( bday 𝐴))
5240, 51eqtrdi 2809 . . . . . . . 8 (𝑎 = 𝑊 → dom 𝑎 = (dom 𝑇 ∪ suc ( bday 𝐴)))
5339, 52nsyl 142 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → ¬ 𝑎 = 𝑊)
5453neqned 2958 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎𝑊)
55 simpr 488 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
5610adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 No )
5756adantr 484 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 No )
58 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐴 ∈ V)
59 simplrl 776 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 No )
6059adantr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 No )
61 simplrr 777 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝐵 ∈ V)
6261adantr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝐵 ∈ V)
635, 41noetainflem1 33525 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ 𝐵 No 𝐵 ∈ V) → 𝑊 No )
6458, 60, 62, 63syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑊 No )
6564adantr 484 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑊 No )
66 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎𝑊)
67 nosepne 33468 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6857, 65, 66, 67syl3anc 1368 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
6955fvresd 6678 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
70 simp-4r 783 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝐵 No 𝐵 ∈ V))
715, 41noetainflem2 33526 . . . . . . . . . . . . . . . . . 18 ((𝐵 No 𝐵 ∈ V) → (𝑊 ↾ dom 𝑇) = 𝑇)
7270, 71syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 ↾ dom 𝑇) = 𝑇)
7372fveq1d 6660 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑊 ↾ dom 𝑇)‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7469, 73eqtr3d 2795 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7568, 74neeqtrd 3020 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7675necomd 3006 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
77 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑇𝑞) = (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
78 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (𝑎𝑞) = (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
7977, 78neeq12d 3012 . . . . . . . . . . . . . 14 (𝑞 = {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → ((𝑇𝑞) ≠ (𝑎𝑞) ↔ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})))
8079rspcev 3541 . . . . . . . . . . . . 13 (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∧ (𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) ≠ (𝑎 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
8155, 76, 80syl2anc 587 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
82 df-ne 2952 . . . . . . . . . . . . . . 15 ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
83 fvres 6677 . . . . . . . . . . . . . . . 16 (𝑞 ∈ dom 𝑇 → ((𝑎 ↾ dom 𝑇)‘𝑞) = (𝑎𝑞))
8483neeq2d 3011 . . . . . . . . . . . . . . 15 (𝑞 ∈ dom 𝑇 → ((𝑇𝑞) ≠ ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8582, 84bitr3id 288 . . . . . . . . . . . . . 14 (𝑞 ∈ dom 𝑇 → (¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ (𝑇𝑞) ≠ (𝑎𝑞)))
8685rexbiia 3174 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞))
87 rexnal 3165 . . . . . . . . . . . . 13 (∃𝑞 ∈ dom 𝑇 ¬ (𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8886, 87bitr3i 280 . . . . . . . . . . . 12 (∃𝑞 ∈ dom 𝑇(𝑇𝑞) ≠ (𝑎𝑞) ↔ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
8981, 88sylib 221 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))
9089olcd 871 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
915noinfno 33506 . . . . . . . . . . . . . . . 16 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
9291ad3antlr 730 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑇 No )
9392adantr 484 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑇 No )
94 nofun 33437 . . . . . . . . . . . . . 14 (𝑇 No → Fun 𝑇)
9593, 94syl 17 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun 𝑇)
96 nofun 33437 . . . . . . . . . . . . . 14 (𝑎 No → Fun 𝑎)
97 funres 6377 . . . . . . . . . . . . . 14 (Fun 𝑎 → Fun (𝑎 ↾ dom 𝑇))
9857, 96, 973syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → Fun (𝑎 ↾ dom 𝑇))
99 eqfunfv 6798 . . . . . . . . . . . . 13 ((Fun 𝑇 ∧ Fun (𝑎 ↾ dom 𝑇)) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
10095, 98, 99syl2anc 587 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
101 ianor 979 . . . . . . . . . . . . 13 (¬ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
102101con1bii 360 . . . . . . . . . . . 12 (¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ (dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∧ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)))
103100, 102bitr4di 292 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ↔ ¬ (¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞))))
104103con2bid 358 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((¬ dom 𝑇 = dom (𝑎 ↾ dom 𝑇) ∨ ¬ ∀𝑞 ∈ dom 𝑇(𝑇𝑞) = ((𝑎 ↾ dom 𝑇)‘𝑞)) ↔ ¬ 𝑇 = (𝑎 ↾ dom 𝑇)))
10590, 104mpbid 235 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 = (𝑎 ↾ dom 𝑇))
106105pm2.21d 121 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
10772breq2d 5044 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ (𝑎 ↾ dom 𝑇) <s 𝑇))
108 nodmon 33438 . . . . . . . . . . . 12 (𝑇 No → dom 𝑇 ∈ On)
10992, 108syl 17 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → dom 𝑇 ∈ On)
110109adantr 484 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → dom 𝑇 ∈ On)
111 sltres 33450 . . . . . . . . . 10 ((𝑎 No 𝑊 No ∧ dom 𝑇 ∈ On) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
11257, 65, 110, 111syl3anc 1368 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑎 <s 𝑊))
113107, 112sylbird 263 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑎 ↾ dom 𝑇) <s 𝑇𝑎 <s 𝑊))
114 simplrr 777 . . . . . . . . . 10 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
115114adantr 484 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))
116 noreson 33448 . . . . . . . . . . . . 13 ((𝑎 No ∧ dom 𝑇 ∈ On) → (𝑎 ↾ dom 𝑇) ∈ No )
11756, 109, 116syl2anc 587 . . . . . . . . . . . 12 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (𝑎 ↾ dom 𝑇) ∈ No )
118117adantr 484 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑎 ↾ dom 𝑇) ∈ No )
119 sltso 33464 . . . . . . . . . . . 12 <s Or No
120 sotric 5470 . . . . . . . . . . . 12 (( <s Or No ∧ (𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No )) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
121119, 120mpan 689 . . . . . . . . . . 11 ((𝑇 No ∧ (𝑎 ↾ dom 𝑇) ∈ No ) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
12293, 118, 121syl2anc 587 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 <s (𝑎 ↾ dom 𝑇) ↔ ¬ (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇)))
123122con2bid 358 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → ((𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇) ↔ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇)))
124115, 123mpbird 260 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → (𝑇 = (𝑎 ↾ dom 𝑇) ∨ (𝑎 ↾ dom 𝑇) <s 𝑇))
125106, 113, 124mpjaod 857 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇) → 𝑎 <s 𝑊)
12664adantr 484 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊 No )
12756adantr 484 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 No )
128 simplr 768 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝑊)
129128necomd 3006 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑊𝑎)
13041fveq1i 6659 . . . . . . . . 9 (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
13192adantr 484 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 No )
132131, 94syl 17 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → Fun 𝑇)
133132funfnd 6366 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑇 Fn dom 𝑇)
134 fnconstg 6552 . . . . . . . . . . . . 13 (2o ∈ V → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
13544, 134ax-mp 5 . . . . . . . . . . . 12 ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇)
136135a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}) Fn (suc ( bday 𝐴) ∖ dom 𝑇))
137 disjdif 4368 . . . . . . . . . . . 12 (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅
138137a1i 11 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑇 ∩ (suc ( bday 𝐴) ∖ dom 𝑇)) = ∅)
139 nosepssdm 33474 . . . . . . . . . . . . . 14 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
140127, 126, 128, 139syl3anc 1368 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎)
141127, 14syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) = dom 𝑎)
142 simp-5l 784 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝐴 No )
143 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝐴)
144143adantr 484 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎𝐴)
14518, 142, 144, 19mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ∈ ( bday 𝐴))
146 elssuni 4830 . . . . . . . . . . . . . . . 16 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ⊆ ( bday 𝐴))
147145, 146syl 17 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ( bday 𝑎) ⊆ ( bday 𝐴))
148141, 147eqsstrrd 3931 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ( bday 𝐴))
149127, 24, 323syl 18 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (dom 𝑎 ( bday 𝐴) ↔ dom 𝑎 ∈ suc ( bday 𝐴)))
150148, 149mpbid 235 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → dom 𝑎 ∈ suc ( bday 𝐴))
151 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎𝑊)
152 nosepon 33453 . . . . . . . . . . . . . . . 16 ((𝑎 No 𝑊 No 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
15356, 64, 151, 152syl3anc 1368 . . . . . . . . . . . . . . 15 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
154153adantr 484 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On)
155 eloni 6179 . . . . . . . . . . . . . 14 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
156 ordsuc 7528 . . . . . . . . . . . . . . . 16 (Ord ( bday 𝐴) ↔ Ord suc ( bday 𝐴))
15730, 156mpbi 233 . . . . . . . . . . . . . . 15 Ord suc ( bday 𝐴)
158 ordtr2 6213 . . . . . . . . . . . . . . 15 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord suc ( bday 𝐴)) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
159157, 158mpan2 690 . . . . . . . . . . . . . 14 (Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
160154, 155, 1593syl 18 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ⊆ dom 𝑎 ∧ dom 𝑎 ∈ suc ( bday 𝐴)) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴)))
161140, 150, 160mp2and 698 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ suc ( bday 𝐴))
162 ontri1 6203 . . . . . . . . . . . . . 14 ((dom 𝑇 ∈ On ∧ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ On) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
163109, 153, 162syl2anc 587 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → (dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇))
164163biimpa 480 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ¬ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇)
165161, 164eldifd 3869 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇))
166133, 136, 138, 165fvun2d 6746 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
16744fvconst2 6957 . . . . . . . . . . 11 ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ (suc ( bday 𝐴) ∖ dom 𝑇) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
168165, 167syl 17 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
169166, 168eqtrd 2793 . . . . . . . . 9 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → ((𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))‘ {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
170130, 169syl5eq 2805 . . . . . . . 8 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o)
171 nosep2o 33470 . . . . . . . 8 (((𝑊 No 𝑎 No 𝑊𝑎) ∧ (𝑊 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) = 2o) → 𝑎 <s 𝑊)
172126, 127, 129, 170, 171syl31anc 1370 . . . . . . 7 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) ∧ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}) → 𝑎 <s 𝑊)
173153, 155syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)})
174 nodmord 33441 . . . . . . . . 9 (𝑇 No → Ord dom 𝑇)
17592, 174syl 17 . . . . . . . 8 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → Ord dom 𝑇)
176 ordtri2or 6264 . . . . . . . 8 ((Ord {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∧ Ord dom 𝑇) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
177173, 175, 176syl2anc 587 . . . . . . 7 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → ( {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)} ∈ dom 𝑇 ∨ dom 𝑇 {𝑝 ∈ On ∣ (𝑎𝑝) ≠ (𝑊𝑝)}))
178125, 172, 177mpjaodan 956 . . . . . 6 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) ∧ 𝑎𝑊) → 𝑎 <s 𝑊)
17954, 178mpdan 686 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑎𝐴 ∧ ¬ 𝑇 <s (𝑎 ↾ dom 𝑇))) → 𝑎 <s 𝑊)
180179expr 460 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (¬ 𝑇 <s (𝑎 ↾ dom 𝑇) → 𝑎 <s 𝑊))
1817, 180sylbid 243 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑎𝐴) → (∀𝑏𝐵 𝑎 <s 𝑏𝑎 <s 𝑊))
182181ralimdva 3108 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴 𝑎 <s 𝑊))
1831823impia 1114 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑎𝐴 𝑎 <s 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  {cab 2735  wne 2951  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  cdif 3855  cun 3856  cin 3857  wss 3858  c0 4225  ifcif 4420  {csn 4522  cop 4528   cuni 4798   cint 4838   class class class wbr 5032  cmpt 5112   Or wor 5442   × cxp 5522  dom cdm 5524  ran crn 5525  cres 5526  cima 5527  Ord word 6168  Oncon0 6169  suc csuc 6171  cio 6292  Fun wfun 6329   Fn wfn 6330  ontowfo 6333  cfv 6335  crio 7107  1oc1o 8105  2oc2o 8106   No csur 33428   <s cslt 33429   bday cbday 33430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-1o 8112  df-2o 8113  df-no 33431  df-slt 33432  df-bday 33433
This theorem is referenced by:  noetalem1  33529
  Copyright terms: Public domain W3C validator