| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel1d | Structured version Visualization version GIF version | ||
| Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
| Ref | Expression |
|---|---|
| conrel1d | ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4189 | . . 3 ⊢ (dom 𝐴 ∩ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
| 2 | dfdm4 5880 | . . . . 5 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 3 | conrel1d.a | . . . . . . 7 ⊢ (𝜑 → ◡𝐴 = ∅) | |
| 4 | 3 | rneqd 5923 | . . . . . 6 ⊢ (𝜑 → ran ◡𝐴 = ran ∅) |
| 5 | rn0 5910 | . . . . . 6 ⊢ ran ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2787 | . . . . 5 ⊢ (𝜑 → ran ◡𝐴 = ∅) |
| 7 | 2, 6 | eqtrid 2783 | . . . 4 ⊢ (𝜑 → dom 𝐴 = ∅) |
| 8 | ineq2 4194 | . . . . 5 ⊢ (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = (ran 𝐵 ∩ ∅)) | |
| 9 | in0 4375 | . . . . 5 ⊢ (ran 𝐵 ∩ ∅) = ∅ | |
| 10 | 8, 9 | eqtrdi 2787 | . . . 4 ⊢ (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = ∅) |
| 11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → (ran 𝐵 ∩ dom 𝐴) = ∅) |
| 12 | 1, 11 | eqtrid 2783 | . 2 ⊢ (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅) |
| 13 | 12 | coemptyd 15003 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3930 ∅c0 4313 ◡ccnv 5658 dom cdm 5659 ran crn 5660 ∘ ccom 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |