![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel1d | Structured version Visualization version GIF version |
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
Ref | Expression |
---|---|
conrel1d | ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4196 | . . 3 ⊢ (dom 𝐴 ∩ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
2 | dfdm4 5889 | . . . . 5 ⊢ dom 𝐴 = ran ◡𝐴 | |
3 | conrel1d.a | . . . . . . 7 ⊢ (𝜑 → ◡𝐴 = ∅) | |
4 | 3 | rneqd 5931 | . . . . . 6 ⊢ (𝜑 → ran ◡𝐴 = ran ∅) |
5 | rn0 5919 | . . . . . 6 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | eqtrdi 2782 | . . . . 5 ⊢ (𝜑 → ran ◡𝐴 = ∅) |
7 | 2, 6 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → dom 𝐴 = ∅) |
8 | ineq2 4201 | . . . . 5 ⊢ (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = (ran 𝐵 ∩ ∅)) | |
9 | in0 4386 | . . . . 5 ⊢ (ran 𝐵 ∩ ∅) = ∅ | |
10 | 8, 9 | eqtrdi 2782 | . . . 4 ⊢ (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = ∅) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → (ran 𝐵 ∩ dom 𝐴) = ∅) |
12 | 1, 11 | eqtrid 2778 | . 2 ⊢ (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅) |
13 | 12 | coemptyd 14932 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∩ cin 3942 ∅c0 4317 ◡ccnv 5668 dom cdm 5669 ran crn 5670 ∘ ccom 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |