Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conrel1d Structured version   Visualization version   GIF version

Theorem conrel1d 43625
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
conrel1d.a (𝜑𝐴 = ∅)
Assertion
Ref Expression
conrel1d (𝜑 → (𝐴𝐵) = ∅)

Proof of Theorem conrel1d
StepHypRef Expression
1 incom 4230 . . 3 (dom 𝐴 ∩ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴)
2 dfdm4 5920 . . . . 5 dom 𝐴 = ran 𝐴
3 conrel1d.a . . . . . . 7 (𝜑𝐴 = ∅)
43rneqd 5963 . . . . . 6 (𝜑 → ran 𝐴 = ran ∅)
5 rn0 5950 . . . . . 6 ran ∅ = ∅
64, 5eqtrdi 2796 . . . . 5 (𝜑 → ran 𝐴 = ∅)
72, 6eqtrid 2792 . . . 4 (𝜑 → dom 𝐴 = ∅)
8 ineq2 4235 . . . . 5 (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = (ran 𝐵 ∩ ∅))
9 in0 4418 . . . . 5 (ran 𝐵 ∩ ∅) = ∅
108, 9eqtrdi 2796 . . . 4 (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = ∅)
117, 10syl 17 . . 3 (𝜑 → (ran 𝐵 ∩ dom 𝐴) = ∅)
121, 11eqtrid 2792 . 2 (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)
1312coemptyd 15028 1 (𝜑 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  c0 4352  ccnv 5699  dom cdm 5700  ran crn 5701  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator