Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conrel1d Structured version   Visualization version   GIF version

Theorem conrel1d 42399
Description: Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
conrel1d.a (𝜑𝐴 = ∅)
Assertion
Ref Expression
conrel1d (𝜑 → (𝐴𝐵) = ∅)

Proof of Theorem conrel1d
StepHypRef Expression
1 incom 4200 . . 3 (dom 𝐴 ∩ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴)
2 dfdm4 5893 . . . . 5 dom 𝐴 = ran 𝐴
3 conrel1d.a . . . . . . 7 (𝜑𝐴 = ∅)
43rneqd 5935 . . . . . 6 (𝜑 → ran 𝐴 = ran ∅)
5 rn0 5923 . . . . . 6 ran ∅ = ∅
64, 5eqtrdi 2788 . . . . 5 (𝜑 → ran 𝐴 = ∅)
72, 6eqtrid 2784 . . . 4 (𝜑 → dom 𝐴 = ∅)
8 ineq2 4205 . . . . 5 (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = (ran 𝐵 ∩ ∅))
9 in0 4390 . . . . 5 (ran 𝐵 ∩ ∅) = ∅
108, 9eqtrdi 2788 . . . 4 (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = ∅)
117, 10syl 17 . . 3 (𝜑 → (ran 𝐵 ∩ dom 𝐴) = ∅)
121, 11eqtrid 2784 . 2 (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)
1312coemptyd 14922 1 (𝜑 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3946  c0 4321  ccnv 5674  dom cdm 5675  ran crn 5676  ccom 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator