Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjv Structured version   Visualization version   GIF version

Theorem cycpmconjv 31128
Description: A formula for computing conjugacy classes of cyclic permutations. Formula in property (b) of [Lang] p. 32. (Contributed by Thierry Arnoux, 9-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjv.s 𝑆 = (SymGrp‘𝐷)
cycpmconjv.m 𝑀 = (toCyc‘𝐷)
cycpmconjv.p + = (+g𝑆)
cycpmconjv.l = (-g𝑆)
cycpmconjv.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
cycpmconjv ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (𝑀‘(𝐺𝑊)))

Proof of Theorem cycpmconjv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmconjv.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2 cycpmconjv.b . . . . . . 7 𝐵 = (Base‘𝑆)
31, 2symgbasf1o 18767 . . . . . 6 (𝐺𝐵𝐺:𝐷1-1-onto𝐷)
433ad2ant2 1136 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷1-1-onto𝐷)
5 simp3 1140 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊 ∈ dom 𝑀)
6 cycpmconjv.m . . . . . . . . . . . . 13 𝑀 = (toCyc‘𝐷)
76, 1, 2tocycf 31103 . . . . . . . . . . . 12 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
873ad2ant1 1135 . . . . . . . . . . 11 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
98fdmd 6556 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
105, 9eleqtrd 2840 . . . . . . . . 9 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
11 id 22 . . . . . . . . . . 11 (𝑤 = 𝑊𝑤 = 𝑊)
12 dmeq 5772 . . . . . . . . . . 11 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
13 eqidd 2738 . . . . . . . . . . 11 (𝑤 = 𝑊𝐷 = 𝐷)
1411, 12, 13f1eq123d 6653 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1514elrab 3602 . . . . . . . . 9 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1610, 15sylib 221 . . . . . . . 8 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1716simprd 499 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊:dom 𝑊1-1𝐷)
18 f1f 6615 . . . . . . 7 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊𝐷)
1917, 18syl 17 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊:dom 𝑊𝐷)
2019frnd 6553 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ran 𝑊𝐷)
214, 20cycpmconjvlem 31127 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) = ( I ↾ (𝐷 ∖ ran (𝐺 ↾ ran 𝑊))))
22 rnco 6116 . . . . . 6 ran (𝐺𝑊) = ran (𝐺 ↾ ran 𝑊)
2322difeq2i 4034 . . . . 5 (𝐷 ∖ ran (𝐺𝑊)) = (𝐷 ∖ ran (𝐺 ↾ ran 𝑊))
2423reseq2i 5848 . . . 4 ( I ↾ (𝐷 ∖ ran (𝐺𝑊))) = ( I ↾ (𝐷 ∖ ran (𝐺 ↾ ran 𝑊)))
2521, 24eqtr4di 2796 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) = ( I ↾ (𝐷 ∖ ran (𝐺𝑊))))
26 coass 6129 . . . . 5 ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺) = (((𝐺𝑊) cyclShift 1) ∘ (𝑊𝐺))
27 cnvco 5754 . . . . . 6 (𝐺𝑊) = (𝑊𝐺)
2827coeq2i 5729 . . . . 5 (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊)) = (((𝐺𝑊) cyclShift 1) ∘ (𝑊𝐺))
2926, 28eqtr4i 2768 . . . 4 ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺) = (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊))
3029a1i 11 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺) = (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊)))
3125, 30uneq12d 4078 . 2 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) ∪ ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺)) = (( I ↾ (𝐷 ∖ ran (𝐺𝑊))) ∪ (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊))))
32 simp2 1139 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺𝐵)
338, 10ffvelrnd 6905 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑀𝑊) ∈ 𝐵)
34 cycpmconjv.p . . . . . . . 8 + = (+g𝑆)
351, 2, 34symgcl 18777 . . . . . . 7 ((𝐺𝐵 ∧ (𝑀𝑊) ∈ 𝐵) → (𝐺 + (𝑀𝑊)) ∈ 𝐵)
3632, 33, 35syl2anc 587 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) ∈ 𝐵)
37 eqid 2737 . . . . . . 7 (invg𝑆) = (invg𝑆)
38 cycpmconjv.l . . . . . . 7 = (-g𝑆)
392, 34, 37, 38grpsubval 18413 . . . . . 6 (((𝐺 + (𝑀𝑊)) ∈ 𝐵𝐺𝐵) → ((𝐺 + (𝑀𝑊)) 𝐺) = ((𝐺 + (𝑀𝑊)) + ((invg𝑆)‘𝐺)))
4036, 32, 39syl2anc 587 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = ((𝐺 + (𝑀𝑊)) + ((invg𝑆)‘𝐺)))
411, 2, 37symginv 18794 . . . . . . 7 (𝐺𝐵 → ((invg𝑆)‘𝐺) = 𝐺)
42413ad2ant2 1136 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((invg𝑆)‘𝐺) = 𝐺)
4342oveq2d 7229 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) + ((invg𝑆)‘𝐺)) = ((𝐺 + (𝑀𝑊)) + 𝐺))
44 simp1 1138 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐷𝑉)
45 f1ocnv 6673 . . . . . . . 8 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷)
464, 45syl 17 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷1-1-onto𝐷)
471, 2elsymgbas 18766 . . . . . . . 8 (𝐷𝑉 → (𝐺𝐵𝐺:𝐷1-1-onto𝐷))
4847biimpar 481 . . . . . . 7 ((𝐷𝑉𝐺:𝐷1-1-onto𝐷) → 𝐺𝐵)
4944, 46, 48syl2anc 587 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺𝐵)
501, 2, 34symgov 18776 . . . . . 6 (((𝐺 + (𝑀𝑊)) ∈ 𝐵𝐺𝐵) → ((𝐺 + (𝑀𝑊)) + 𝐺) = ((𝐺 + (𝑀𝑊)) ∘ 𝐺))
5136, 49, 50syl2anc 587 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) + 𝐺) = ((𝐺 + (𝑀𝑊)) ∘ 𝐺))
5240, 43, 513eqtrd 2781 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = ((𝐺 + (𝑀𝑊)) ∘ 𝐺))
531, 2, 34symgov 18776 . . . . . . . 8 ((𝐺𝐵 ∧ (𝑀𝑊) ∈ 𝐵) → (𝐺 + (𝑀𝑊)) = (𝐺 ∘ (𝑀𝑊)))
5432, 33, 53syl2anc 587 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) = (𝐺 ∘ (𝑀𝑊)))
5516simpld 498 . . . . . . . . 9 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊 ∈ Word 𝐷)
566, 44, 55, 17tocycfv 31095 . . . . . . . 8 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑀𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
5756coeq2d 5731 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ (𝑀𝑊)) = (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))))
58 coundi 6111 . . . . . . . 8 (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊)))
5958a1i 11 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))))
6054, 57, 593eqtrd 2781 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))))
61 coires1 6128 . . . . . . . 8 (𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) = (𝐺 ↾ (𝐷 ∖ ran 𝑊))
6261a1i 11 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) = (𝐺 ↾ (𝐷 ∖ ran 𝑊)))
63 coass 6129 . . . . . . . 8 ((𝐺 ∘ (𝑊 cyclShift 1)) ∘ 𝑊) = (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))
64 1zzd 12208 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 1 ∈ ℤ)
65 f1of 6661 . . . . . . . . . . 11 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷𝐷)
664, 65syl 17 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷𝐷)
67 cshco 14401 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝐺:𝐷𝐷) → (𝐺 ∘ (𝑊 cyclShift 1)) = ((𝐺𝑊) cyclShift 1))
6855, 64, 66, 67syl3anc 1373 . . . . . . . . 9 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ (𝑊 cyclShift 1)) = ((𝐺𝑊) cyclShift 1))
6968coeq1d 5730 . . . . . . . 8 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ∘ (𝑊 cyclShift 1)) ∘ 𝑊) = (((𝐺𝑊) cyclShift 1) ∘ 𝑊))
7063, 69eqtr3id 2792 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊)) = (((𝐺𝑊) cyclShift 1) ∘ 𝑊))
7162, 70uneq12d 4078 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))) = ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)))
7260, 71eqtrd 2777 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) = ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)))
7372coeq1d 5730 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) ∘ 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)) ∘ 𝐺))
7452, 73eqtrd 2777 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)) ∘ 𝐺))
75 coundir 6112 . . 3 (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)) ∘ 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) ∪ ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺))
7674, 75eqtrdi 2794 . 2 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) ∪ ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺)))
77 wrdco 14396 . . . 4 ((𝑊 ∈ Word 𝐷𝐺:𝐷𝐷) → (𝐺𝑊) ∈ Word 𝐷)
7855, 66, 77syl2anc 587 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺𝑊) ∈ Word 𝐷)
79 f1of1 6660 . . . . . 6 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1𝐷)
804, 79syl 17 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷1-1𝐷)
81 f1co 6627 . . . . 5 ((𝐺:𝐷1-1𝐷𝑊:dom 𝑊1-1𝐷) → (𝐺𝑊):dom 𝑊1-1𝐷)
8280, 17, 81syl2anc 587 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺𝑊):dom 𝑊1-1𝐷)
8366fdmd 6556 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → dom 𝐺 = 𝐷)
8420, 83sseqtrrd 3942 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ran 𝑊 ⊆ dom 𝐺)
85 dmcosseq 5842 . . . . . 6 (ran 𝑊 ⊆ dom 𝐺 → dom (𝐺𝑊) = dom 𝑊)
8684, 85syl 17 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → dom (𝐺𝑊) = dom 𝑊)
87 f1eq2 6611 . . . . 5 (dom (𝐺𝑊) = dom 𝑊 → ((𝐺𝑊):dom (𝐺𝑊)–1-1𝐷 ↔ (𝐺𝑊):dom 𝑊1-1𝐷))
8886, 87syl 17 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺𝑊):dom (𝐺𝑊)–1-1𝐷 ↔ (𝐺𝑊):dom 𝑊1-1𝐷))
8982, 88mpbird 260 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺𝑊):dom (𝐺𝑊)–1-1𝐷)
906, 44, 78, 89tocycfv 31095 . 2 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑀‘(𝐺𝑊)) = (( I ↾ (𝐷 ∖ ran (𝐺𝑊))) ∪ (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊))))
9131, 76, 903eqtr4d 2787 1 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (𝑀‘(𝐺𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  {crab 3065  cdif 3863  cun 3864  wss 3866   I cid 5454  ccnv 5550  dom cdm 5551  ran crn 5552  cres 5553  ccom 5555  wf 6376  1-1wf1 6377  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  1c1 10730  cz 12176  Word cword 14069   cyclShift ccsh 14353  Basecbs 16760  +gcplusg 16802  invgcminusg 18366  -gcsg 18367  SymGrpcsymg 18759  toCycctocyc 31092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-hash 13897  df-word 14070  df-concat 14126  df-substr 14206  df-pfx 14236  df-csh 14354  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-tset 16821  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-efmnd 18296  df-grp 18368  df-minusg 18369  df-sbg 18370  df-symg 18760  df-tocyc 31093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator