| Step | Hyp | Ref
| Expression |
| 1 | | cycpmconjv.s |
. . . . . . 7
⊢ 𝑆 = (SymGrp‘𝐷) |
| 2 | | cycpmconjv.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
| 3 | 1, 2 | symgbasf1o 19361 |
. . . . . 6
⊢ (𝐺 ∈ 𝐵 → 𝐺:𝐷–1-1-onto→𝐷) |
| 4 | 3 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝐺:𝐷–1-1-onto→𝐷) |
| 5 | | simp3 1138 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝑊 ∈ dom 𝑀) |
| 6 | | cycpmconjv.m |
. . . . . . . . . . . . 13
⊢ 𝑀 = (toCyc‘𝐷) |
| 7 | 6, 1, 2 | tocycf 33133 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
| 8 | 7 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
| 9 | 8 | fdmd 6721 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 10 | 5, 9 | eleqtrd 2837 |
. . . . . . . . 9
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 11 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) |
| 12 | | dmeq 5888 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) |
| 13 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) |
| 14 | 11, 12, 13 | f1eq123d 6815 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 15 | 14 | elrab 3676 |
. . . . . . . . 9
⊢ (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
| 16 | 10, 15 | sylib 218 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
| 17 | 16 | simprd 495 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝑊:dom 𝑊–1-1→𝐷) |
| 18 | | f1f 6779 |
. . . . . . 7
⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊⟶𝐷) |
| 19 | 17, 18 | syl 17 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝑊:dom 𝑊⟶𝐷) |
| 20 | 19 | frnd 6719 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ran 𝑊 ⊆ 𝐷) |
| 21 | 4, 20 | cycpmconjvlem 33157 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ ◡𝐺) = ( I ↾ (𝐷 ∖ ran (𝐺 ↾ ran 𝑊)))) |
| 22 | | rnco 6246 |
. . . . . 6
⊢ ran
(𝐺 ∘ 𝑊) = ran (𝐺 ↾ ran 𝑊) |
| 23 | 22 | difeq2i 4103 |
. . . . 5
⊢ (𝐷 ∖ ran (𝐺 ∘ 𝑊)) = (𝐷 ∖ ran (𝐺 ↾ ran 𝑊)) |
| 24 | 23 | reseq2i 5968 |
. . . 4
⊢ ( I
↾ (𝐷 ∖ ran
(𝐺 ∘ 𝑊))) = ( I ↾ (𝐷 ∖ ran (𝐺 ↾ ran 𝑊))) |
| 25 | 21, 24 | eqtr4di 2789 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ ◡𝐺) = ( I ↾ (𝐷 ∖ ran (𝐺 ∘ 𝑊)))) |
| 26 | | coass 6259 |
. . . . 5
⊢ ((((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊) ∘ ◡𝐺) = (((𝐺 ∘ 𝑊) cyclShift 1) ∘ (◡𝑊 ∘ ◡𝐺)) |
| 27 | | cnvco 5870 |
. . . . . 6
⊢ ◡(𝐺 ∘ 𝑊) = (◡𝑊 ∘ ◡𝐺) |
| 28 | 27 | coeq2i 5845 |
. . . . 5
⊢ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡(𝐺 ∘ 𝑊)) = (((𝐺 ∘ 𝑊) cyclShift 1) ∘ (◡𝑊 ∘ ◡𝐺)) |
| 29 | 26, 28 | eqtr4i 2762 |
. . . 4
⊢ ((((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊) ∘ ◡𝐺) = (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡(𝐺 ∘ 𝑊)) |
| 30 | 29 | a1i 11 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊) ∘ ◡𝐺) = (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡(𝐺 ∘ 𝑊))) |
| 31 | 25, 30 | uneq12d 4149 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ ◡𝐺) ∪ ((((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊) ∘ ◡𝐺)) = (( I ↾ (𝐷 ∖ ran (𝐺 ∘ 𝑊))) ∪ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡(𝐺 ∘ 𝑊)))) |
| 32 | | simp2 1137 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝐺 ∈ 𝐵) |
| 33 | 8, 10 | ffvelcdmd 7080 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝑀‘𝑊) ∈ 𝐵) |
| 34 | | cycpmconjv.p |
. . . . . . . 8
⊢ + =
(+g‘𝑆) |
| 35 | 1, 2, 34 | symgcl 19371 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐵 ∧ (𝑀‘𝑊) ∈ 𝐵) → (𝐺 + (𝑀‘𝑊)) ∈ 𝐵) |
| 36 | 32, 33, 35 | syl2anc 584 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀‘𝑊)) ∈ 𝐵) |
| 37 | | eqid 2736 |
. . . . . . 7
⊢
(invg‘𝑆) = (invg‘𝑆) |
| 38 | | cycpmconjv.l |
. . . . . . 7
⊢ − =
(-g‘𝑆) |
| 39 | 2, 34, 37, 38 | grpsubval 18973 |
. . . . . 6
⊢ (((𝐺 + (𝑀‘𝑊)) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐺 + (𝑀‘𝑊)) − 𝐺) = ((𝐺 + (𝑀‘𝑊)) +
((invg‘𝑆)‘𝐺))) |
| 40 | 36, 32, 39 | syl2anc 584 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) − 𝐺) = ((𝐺 + (𝑀‘𝑊)) +
((invg‘𝑆)‘𝐺))) |
| 41 | 1, 2, 37 | symginv 19388 |
. . . . . . 7
⊢ (𝐺 ∈ 𝐵 → ((invg‘𝑆)‘𝐺) = ◡𝐺) |
| 42 | 41 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((invg‘𝑆)‘𝐺) = ◡𝐺) |
| 43 | 42 | oveq2d 7426 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) +
((invg‘𝑆)‘𝐺)) = ((𝐺 + (𝑀‘𝑊)) + ◡𝐺)) |
| 44 | | simp1 1136 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝐷 ∈ 𝑉) |
| 45 | | f1ocnv 6835 |
. . . . . . . 8
⊢ (𝐺:𝐷–1-1-onto→𝐷 → ◡𝐺:𝐷–1-1-onto→𝐷) |
| 46 | 4, 45 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ◡𝐺:𝐷–1-1-onto→𝐷) |
| 47 | 1, 2 | elsymgbas 19360 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝑉 → (◡𝐺 ∈ 𝐵 ↔ ◡𝐺:𝐷–1-1-onto→𝐷)) |
| 48 | 47 | biimpar 477 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ ◡𝐺:𝐷–1-1-onto→𝐷) → ◡𝐺 ∈ 𝐵) |
| 49 | 44, 46, 48 | syl2anc 584 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ◡𝐺 ∈ 𝐵) |
| 50 | 1, 2, 34 | symgov 19370 |
. . . . . 6
⊢ (((𝐺 + (𝑀‘𝑊)) ∈ 𝐵 ∧ ◡𝐺 ∈ 𝐵) → ((𝐺 + (𝑀‘𝑊)) + ◡𝐺) = ((𝐺 + (𝑀‘𝑊)) ∘ ◡𝐺)) |
| 51 | 36, 49, 50 | syl2anc 584 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) + ◡𝐺) = ((𝐺 + (𝑀‘𝑊)) ∘ ◡𝐺)) |
| 52 | 40, 43, 51 | 3eqtrd 2775 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) − 𝐺) = ((𝐺 + (𝑀‘𝑊)) ∘ ◡𝐺)) |
| 53 | 1, 2, 34 | symgov 19370 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝐵 ∧ (𝑀‘𝑊) ∈ 𝐵) → (𝐺 + (𝑀‘𝑊)) = (𝐺 ∘ (𝑀‘𝑊))) |
| 54 | 32, 33, 53 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀‘𝑊)) = (𝐺 ∘ (𝑀‘𝑊))) |
| 55 | 16 | simpld 494 |
. . . . . . . . 9
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝑊 ∈ Word 𝐷) |
| 56 | 6, 44, 55, 17 | tocycfv 33125 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝑀‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| 57 | 56 | coeq2d 5847 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ (𝑀‘𝑊)) = (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)))) |
| 58 | | coundi 6241 |
. . . . . . . 8
⊢ (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| 59 | 58 | a1i 11 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ ◡𝑊)))) |
| 60 | 54, 57, 59 | 3eqtrd 2775 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀‘𝑊)) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ ◡𝑊)))) |
| 61 | | coires1 6258 |
. . . . . . . 8
⊢ (𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) = (𝐺 ↾ (𝐷 ∖ ran 𝑊)) |
| 62 | 61 | a1i 11 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) = (𝐺 ↾ (𝐷 ∖ ran 𝑊))) |
| 63 | | coass 6259 |
. . . . . . . 8
⊢ ((𝐺 ∘ (𝑊 cyclShift 1)) ∘ ◡𝑊) = (𝐺 ∘ ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
| 64 | | 1zzd 12628 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 1 ∈ ℤ) |
| 65 | | f1of 6823 |
. . . . . . . . . . 11
⊢ (𝐺:𝐷–1-1-onto→𝐷 → 𝐺:𝐷⟶𝐷) |
| 66 | 4, 65 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝐺:𝐷⟶𝐷) |
| 67 | | cshco 14860 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝐺:𝐷⟶𝐷) → (𝐺 ∘ (𝑊 cyclShift 1)) = ((𝐺 ∘ 𝑊) cyclShift 1)) |
| 68 | 55, 64, 66, 67 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ (𝑊 cyclShift 1)) = ((𝐺 ∘ 𝑊) cyclShift 1)) |
| 69 | 68 | coeq1d 5846 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 ∘ (𝑊 cyclShift 1)) ∘ ◡𝑊) = (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊)) |
| 70 | 63, 69 | eqtr3id 2785 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ ((𝑊 cyclShift 1) ∘ ◡𝑊)) = (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊)) |
| 71 | 62, 70 | uneq12d 4149 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ ◡𝑊))) = ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊))) |
| 72 | 60, 71 | eqtrd 2771 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀‘𝑊)) = ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊))) |
| 73 | 72 | coeq1d 5846 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) ∘ ◡𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊)) ∘ ◡𝐺)) |
| 74 | 52, 73 | eqtrd 2771 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) − 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊)) ∘ ◡𝐺)) |
| 75 | | coundir 6242 |
. . 3
⊢ (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊)) ∘ ◡𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ ◡𝐺) ∪ ((((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊) ∘ ◡𝐺)) |
| 76 | 74, 75 | eqtrdi 2787 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) − 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ ◡𝐺) ∪ ((((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡𝑊) ∘ ◡𝐺))) |
| 77 | | wrdco 14855 |
. . . 4
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝐺:𝐷⟶𝐷) → (𝐺 ∘ 𝑊) ∈ Word 𝐷) |
| 78 | 55, 66, 77 | syl2anc 584 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ 𝑊) ∈ Word 𝐷) |
| 79 | | f1of1 6822 |
. . . . . 6
⊢ (𝐺:𝐷–1-1-onto→𝐷 → 𝐺:𝐷–1-1→𝐷) |
| 80 | 4, 79 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → 𝐺:𝐷–1-1→𝐷) |
| 81 | | f1co 6790 |
. . . . 5
⊢ ((𝐺:𝐷–1-1→𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷) → (𝐺 ∘ 𝑊):dom 𝑊–1-1→𝐷) |
| 82 | 80, 17, 81 | syl2anc 584 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ 𝑊):dom 𝑊–1-1→𝐷) |
| 83 | 66 | fdmd 6721 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → dom 𝐺 = 𝐷) |
| 84 | 20, 83 | sseqtrrd 4001 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ran 𝑊 ⊆ dom 𝐺) |
| 85 | | dmcosseq 5961 |
. . . . . 6
⊢ (ran
𝑊 ⊆ dom 𝐺 → dom (𝐺 ∘ 𝑊) = dom 𝑊) |
| 86 | 84, 85 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → dom (𝐺 ∘ 𝑊) = dom 𝑊) |
| 87 | | f1eq2 6775 |
. . . . 5
⊢ (dom
(𝐺 ∘ 𝑊) = dom 𝑊 → ((𝐺 ∘ 𝑊):dom (𝐺 ∘ 𝑊)–1-1→𝐷 ↔ (𝐺 ∘ 𝑊):dom 𝑊–1-1→𝐷)) |
| 88 | 86, 87 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 ∘ 𝑊):dom (𝐺 ∘ 𝑊)–1-1→𝐷 ↔ (𝐺 ∘ 𝑊):dom 𝑊–1-1→𝐷)) |
| 89 | 82, 88 | mpbird 257 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝐺 ∘ 𝑊):dom (𝐺 ∘ 𝑊)–1-1→𝐷) |
| 90 | 6, 44, 78, 89 | tocycfv 33125 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → (𝑀‘(𝐺 ∘ 𝑊)) = (( I ↾ (𝐷 ∖ ran (𝐺 ∘ 𝑊))) ∪ (((𝐺 ∘ 𝑊) cyclShift 1) ∘ ◡(𝐺 ∘ 𝑊)))) |
| 91 | 31, 76, 90 | 3eqtr4d 2781 |
1
⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) − 𝐺) = (𝑀‘(𝐺 ∘ 𝑊))) |