Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjv Structured version   Visualization version   GIF version

Theorem cycpmconjv 33163
Description: A formula for computing conjugacy classes of cyclic permutations. Formula in property (b) of [Lang] p. 32. (Contributed by Thierry Arnoux, 9-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjv.s 𝑆 = (SymGrp‘𝐷)
cycpmconjv.m 𝑀 = (toCyc‘𝐷)
cycpmconjv.p + = (+g𝑆)
cycpmconjv.l = (-g𝑆)
cycpmconjv.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
cycpmconjv ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (𝑀‘(𝐺𝑊)))

Proof of Theorem cycpmconjv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmconjv.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
2 cycpmconjv.b . . . . . . 7 𝐵 = (Base‘𝑆)
31, 2symgbasf1o 19393 . . . . . 6 (𝐺𝐵𝐺:𝐷1-1-onto𝐷)
433ad2ant2 1134 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷1-1-onto𝐷)
5 simp3 1138 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊 ∈ dom 𝑀)
6 cycpmconjv.m . . . . . . . . . . . . 13 𝑀 = (toCyc‘𝐷)
76, 1, 2tocycf 33138 . . . . . . . . . . . 12 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
873ad2ant1 1133 . . . . . . . . . . 11 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
98fdmd 6745 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
105, 9eleqtrd 2842 . . . . . . . . 9 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
11 id 22 . . . . . . . . . . 11 (𝑤 = 𝑊𝑤 = 𝑊)
12 dmeq 5913 . . . . . . . . . . 11 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
13 eqidd 2737 . . . . . . . . . . 11 (𝑤 = 𝑊𝐷 = 𝐷)
1411, 12, 13f1eq123d 6839 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
1514elrab 3691 . . . . . . . . 9 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1610, 15sylib 218 . . . . . . . 8 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
1716simprd 495 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊:dom 𝑊1-1𝐷)
18 f1f 6803 . . . . . . 7 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊𝐷)
1917, 18syl 17 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊:dom 𝑊𝐷)
2019frnd 6743 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ran 𝑊𝐷)
214, 20cycpmconjvlem 33162 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) = ( I ↾ (𝐷 ∖ ran (𝐺 ↾ ran 𝑊))))
22 rnco 6271 . . . . . 6 ran (𝐺𝑊) = ran (𝐺 ↾ ran 𝑊)
2322difeq2i 4122 . . . . 5 (𝐷 ∖ ran (𝐺𝑊)) = (𝐷 ∖ ran (𝐺 ↾ ran 𝑊))
2423reseq2i 5993 . . . 4 ( I ↾ (𝐷 ∖ ran (𝐺𝑊))) = ( I ↾ (𝐷 ∖ ran (𝐺 ↾ ran 𝑊)))
2521, 24eqtr4di 2794 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) = ( I ↾ (𝐷 ∖ ran (𝐺𝑊))))
26 coass 6284 . . . . 5 ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺) = (((𝐺𝑊) cyclShift 1) ∘ (𝑊𝐺))
27 cnvco 5895 . . . . . 6 (𝐺𝑊) = (𝑊𝐺)
2827coeq2i 5870 . . . . 5 (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊)) = (((𝐺𝑊) cyclShift 1) ∘ (𝑊𝐺))
2926, 28eqtr4i 2767 . . . 4 ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺) = (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊))
3029a1i 11 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺) = (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊)))
3125, 30uneq12d 4168 . 2 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) ∪ ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺)) = (( I ↾ (𝐷 ∖ ran (𝐺𝑊))) ∪ (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊))))
32 simp2 1137 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺𝐵)
338, 10ffvelcdmd 7104 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑀𝑊) ∈ 𝐵)
34 cycpmconjv.p . . . . . . . 8 + = (+g𝑆)
351, 2, 34symgcl 19403 . . . . . . 7 ((𝐺𝐵 ∧ (𝑀𝑊) ∈ 𝐵) → (𝐺 + (𝑀𝑊)) ∈ 𝐵)
3632, 33, 35syl2anc 584 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) ∈ 𝐵)
37 eqid 2736 . . . . . . 7 (invg𝑆) = (invg𝑆)
38 cycpmconjv.l . . . . . . 7 = (-g𝑆)
392, 34, 37, 38grpsubval 19004 . . . . . 6 (((𝐺 + (𝑀𝑊)) ∈ 𝐵𝐺𝐵) → ((𝐺 + (𝑀𝑊)) 𝐺) = ((𝐺 + (𝑀𝑊)) + ((invg𝑆)‘𝐺)))
4036, 32, 39syl2anc 584 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = ((𝐺 + (𝑀𝑊)) + ((invg𝑆)‘𝐺)))
411, 2, 37symginv 19421 . . . . . . 7 (𝐺𝐵 → ((invg𝑆)‘𝐺) = 𝐺)
42413ad2ant2 1134 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((invg𝑆)‘𝐺) = 𝐺)
4342oveq2d 7448 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) + ((invg𝑆)‘𝐺)) = ((𝐺 + (𝑀𝑊)) + 𝐺))
44 simp1 1136 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐷𝑉)
45 f1ocnv 6859 . . . . . . . 8 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1-onto𝐷)
464, 45syl 17 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷1-1-onto𝐷)
471, 2elsymgbas 19392 . . . . . . . 8 (𝐷𝑉 → (𝐺𝐵𝐺:𝐷1-1-onto𝐷))
4847biimpar 477 . . . . . . 7 ((𝐷𝑉𝐺:𝐷1-1-onto𝐷) → 𝐺𝐵)
4944, 46, 48syl2anc 584 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺𝐵)
501, 2, 34symgov 19402 . . . . . 6 (((𝐺 + (𝑀𝑊)) ∈ 𝐵𝐺𝐵) → ((𝐺 + (𝑀𝑊)) + 𝐺) = ((𝐺 + (𝑀𝑊)) ∘ 𝐺))
5136, 49, 50syl2anc 584 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) + 𝐺) = ((𝐺 + (𝑀𝑊)) ∘ 𝐺))
5240, 43, 513eqtrd 2780 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = ((𝐺 + (𝑀𝑊)) ∘ 𝐺))
531, 2, 34symgov 19402 . . . . . . . 8 ((𝐺𝐵 ∧ (𝑀𝑊) ∈ 𝐵) → (𝐺 + (𝑀𝑊)) = (𝐺 ∘ (𝑀𝑊)))
5432, 33, 53syl2anc 584 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) = (𝐺 ∘ (𝑀𝑊)))
5516simpld 494 . . . . . . . . 9 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝑊 ∈ Word 𝐷)
566, 44, 55, 17tocycfv 33130 . . . . . . . 8 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑀𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
5756coeq2d 5872 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ (𝑀𝑊)) = (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))))
58 coundi 6266 . . . . . . . 8 (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊)))
5958a1i 11 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))))
6054, 57, 593eqtrd 2780 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) = ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))))
61 coires1 6283 . . . . . . . 8 (𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) = (𝐺 ↾ (𝐷 ∖ ran 𝑊))
6261a1i 11 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) = (𝐺 ↾ (𝐷 ∖ ran 𝑊)))
63 coass 6284 . . . . . . . 8 ((𝐺 ∘ (𝑊 cyclShift 1)) ∘ 𝑊) = (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))
64 1zzd 12650 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 1 ∈ ℤ)
65 f1of 6847 . . . . . . . . . . 11 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷𝐷)
664, 65syl 17 . . . . . . . . . 10 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷𝐷)
67 cshco 14876 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ∧ 𝐺:𝐷𝐷) → (𝐺 ∘ (𝑊 cyclShift 1)) = ((𝐺𝑊) cyclShift 1))
6855, 64, 66, 67syl3anc 1372 . . . . . . . . 9 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ (𝑊 cyclShift 1)) = ((𝐺𝑊) cyclShift 1))
6968coeq1d 5871 . . . . . . . 8 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ∘ (𝑊 cyclShift 1)) ∘ 𝑊) = (((𝐺𝑊) cyclShift 1) ∘ 𝑊))
7063, 69eqtr3id 2790 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊)) = (((𝐺𝑊) cyclShift 1) ∘ 𝑊))
7162, 70uneq12d 4168 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 ∘ ( I ↾ (𝐷 ∖ ran 𝑊))) ∪ (𝐺 ∘ ((𝑊 cyclShift 1) ∘ 𝑊))) = ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)))
7260, 71eqtrd 2776 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺 + (𝑀𝑊)) = ((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)))
7372coeq1d 5871 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) ∘ 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)) ∘ 𝐺))
7452, 73eqtrd 2776 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)) ∘ 𝐺))
75 coundir 6267 . . 3 (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∪ (((𝐺𝑊) cyclShift 1) ∘ 𝑊)) ∘ 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) ∪ ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺))
7674, 75eqtrdi 2792 . 2 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (((𝐺 ↾ (𝐷 ∖ ran 𝑊)) ∘ 𝐺) ∪ ((((𝐺𝑊) cyclShift 1) ∘ 𝑊) ∘ 𝐺)))
77 wrdco 14871 . . . 4 ((𝑊 ∈ Word 𝐷𝐺:𝐷𝐷) → (𝐺𝑊) ∈ Word 𝐷)
7855, 66, 77syl2anc 584 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺𝑊) ∈ Word 𝐷)
79 f1of1 6846 . . . . . 6 (𝐺:𝐷1-1-onto𝐷𝐺:𝐷1-1𝐷)
804, 79syl 17 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → 𝐺:𝐷1-1𝐷)
81 f1co 6814 . . . . 5 ((𝐺:𝐷1-1𝐷𝑊:dom 𝑊1-1𝐷) → (𝐺𝑊):dom 𝑊1-1𝐷)
8280, 17, 81syl2anc 584 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺𝑊):dom 𝑊1-1𝐷)
8366fdmd 6745 . . . . . . 7 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → dom 𝐺 = 𝐷)
8420, 83sseqtrrd 4020 . . . . . 6 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ran 𝑊 ⊆ dom 𝐺)
85 dmcosseq 5986 . . . . . 6 (ran 𝑊 ⊆ dom 𝐺 → dom (𝐺𝑊) = dom 𝑊)
8684, 85syl 17 . . . . 5 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → dom (𝐺𝑊) = dom 𝑊)
87 f1eq2 6799 . . . . 5 (dom (𝐺𝑊) = dom 𝑊 → ((𝐺𝑊):dom (𝐺𝑊)–1-1𝐷 ↔ (𝐺𝑊):dom 𝑊1-1𝐷))
8886, 87syl 17 . . . 4 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺𝑊):dom (𝐺𝑊)–1-1𝐷 ↔ (𝐺𝑊):dom 𝑊1-1𝐷))
8982, 88mpbird 257 . . 3 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝐺𝑊):dom (𝐺𝑊)–1-1𝐷)
906, 44, 78, 89tocycfv 33130 . 2 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → (𝑀‘(𝐺𝑊)) = (( I ↾ (𝐷 ∖ ran (𝐺𝑊))) ∪ (((𝐺𝑊) cyclShift 1) ∘ (𝐺𝑊))))
9131, 76, 903eqtr4d 2786 1 ((𝐷𝑉𝐺𝐵𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀𝑊)) 𝐺) = (𝑀‘(𝐺𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {crab 3435  cdif 3947  cun 3948  wss 3950   I cid 5576  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  ccom 5688  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  1c1 11157  cz 12615  Word cword 14553   cyclShift ccsh 14827  Basecbs 17248  +gcplusg 17298  invgcminusg 18953  -gcsg 18954  SymGrpcsymg 19387  toCycctocyc 33127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-hash 14371  df-word 14554  df-concat 14610  df-substr 14680  df-pfx 14710  df-csh 14828  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-tset 17317  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-efmnd 18883  df-grp 18955  df-minusg 18956  df-sbg 18957  df-symg 19388  df-tocyc 33128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator