MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat Structured version   Visualization version   GIF version

Theorem isnat 17875
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
isnat.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
isnat.g (𝜑𝐾(𝐶 Func 𝐷)𝐿)
Assertion
Ref Expression
isnat (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
Distinct variable groups:   𝑥,,𝑦,𝐴   𝑥,𝐵,𝑦   𝐶,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   𝜑,,𝑥,𝑦   ,𝐾,𝑥,𝑦   ,𝐿,𝑥,𝑦   𝐷,,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnat
Dummy variables 𝑎 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
2 natfval.b . . . . . 6 𝐵 = (Base‘𝐶)
3 natfval.h . . . . . 6 𝐻 = (Hom ‘𝐶)
4 natfval.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 natfval.o . . . . . 6 · = (comp‘𝐷)
61, 2, 3, 4, 5natfval 17874 . . . . 5 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
76a1i 11 . . . 4 (𝜑𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
8 fvexd 6841 . . . . 5 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) ∈ V)
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → 𝑓 = ⟨𝐹, 𝐺⟩)
109fveq2d 6830 . . . . . 6 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) = (1st ‘⟨𝐹, 𝐺⟩))
11 relfunc 17787 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
12 isnat.f . . . . . . . . 9 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
13 brrelex12 5675 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
1411, 12, 13sylancr 587 . . . . . . . 8 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
15 op1stg 7943 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1614, 15syl 17 . . . . . . 7 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1810, 17eqtrd 2764 . . . . 5 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) = 𝐹)
19 fvexd 6841 . . . . . 6 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) ∈ V)
20 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → 𝑔 = ⟨𝐾, 𝐿⟩)
2120fveq2d 6830 . . . . . . 7 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) = (1st ‘⟨𝐾, 𝐿⟩))
22 isnat.g . . . . . . . . . 10 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
23 brrelex12 5675 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐾(𝐶 Func 𝐷)𝐿) → (𝐾 ∈ V ∧ 𝐿 ∈ V))
2411, 22, 23sylancr 587 . . . . . . . . 9 (𝜑 → (𝐾 ∈ V ∧ 𝐿 ∈ V))
25 op1stg 7943 . . . . . . . . 9 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2624, 25syl 17 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2726ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2821, 27eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) = 𝐾)
29 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑟 = 𝐹)
3029fveq1d 6828 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑟𝑥) = (𝐹𝑥))
31 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑠 = 𝐾)
3231fveq1d 6828 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑠𝑥) = (𝐾𝑥))
3330, 32oveq12d 7371 . . . . . . . 8 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑟𝑥)𝐽(𝑠𝑥)) = ((𝐹𝑥)𝐽(𝐾𝑥)))
3433ixpeq2dv 8847 . . . . . . 7 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) = X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
3529fveq1d 6828 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑟𝑦) = (𝐹𝑦))
3630, 35opeq12d 4835 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ⟨(𝑟𝑥), (𝑟𝑦)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
3731fveq1d 6828 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑠𝑦) = (𝐾𝑦))
3836, 37oveq12d 7371 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦)) = (⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦)))
39 eqidd 2730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑎𝑦) = (𝑎𝑦))
409ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑓 = ⟨𝐹, 𝐺⟩)
4140fveq2d 6830 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑓) = (2nd ‘⟨𝐹, 𝐺⟩))
42 op2ndg 7944 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4314, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4443ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4541, 44eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑓) = 𝐺)
4645oveqd 7370 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑥(2nd𝑓)𝑦) = (𝑥𝐺𝑦))
4746fveq1d 6828 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥𝐺𝑦)‘))
4838, 39, 47oveq123d 7374 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)))
4930, 32opeq12d 4835 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ⟨(𝑟𝑥), (𝑠𝑥)⟩ = ⟨(𝐹𝑥), (𝐾𝑥)⟩)
5049, 37oveq12d 7371 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦)) = (⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦)))
5120adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑔 = ⟨𝐾, 𝐿⟩)
5251fveq2d 6830 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑔) = (2nd ‘⟨𝐾, 𝐿⟩))
53 op2ndg 7944 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5424, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5554ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5652, 55eqtrd 2764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑔) = 𝐿)
5756oveqd 7370 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑥(2nd𝑔)𝑦) = (𝑥𝐿𝑦))
5857fveq1d 6828 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥𝐿𝑦)‘))
59 eqidd 2730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑎𝑥) = (𝑎𝑥))
6050, 58, 59oveq123d 7374 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)))
6148, 60eqeq12d 2745 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
6261ralbidv 3152 . . . . . . . 8 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
63622ralbidv 3193 . . . . . . 7 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
6434, 63rabeqbidv 3415 . . . . . 6 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → {𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
6519, 28, 64csbied2 3890 . . . . 5 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
668, 18, 65csbied2 3890 . . . 4 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
67 df-br 5096 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
6812, 67sylib 218 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
69 df-br 5096 . . . . 5 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
7022, 69sylib 218 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
71 ovex 7386 . . . . . . . 8 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
7271rgenw 3048 . . . . . . 7 𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
73 ixpexg 8856 . . . . . . 7 (∀𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V → X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V)
7472, 73ax-mp 5 . . . . . 6 X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
7574rabex 5281 . . . . 5 {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ∈ V
7675a1i 11 . . . 4 (𝜑 → {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ∈ V)
777, 66, 68, 70, 76ovmpod 7505 . . 3 (𝜑 → (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
7877eleq2d 2814 . 2 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ 𝐴 ∈ {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))}))
79 fveq1 6825 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑦) = (𝐴𝑦))
8079oveq1d 7368 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)))
81 fveq1 6825 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑥) = (𝐴𝑥))
8281oveq2d 7369 . . . . . 6 (𝑎 = 𝐴 → (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
8380, 82eqeq12d 2745 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8483ralbidv 3152 . . . 4 (𝑎 = 𝐴 → (∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
85842ralbidv 3193 . . 3 (𝑎 = 𝐴 → (∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8685elrab 3650 . 2 (𝐴 ∈ {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8778, 86bitrdi 287 1 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  csb 3853  cop 4585   class class class wbr 5095  Rel wrel 5628  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Xcixp 8831  Basecbs 17138  Hom chom 17190  compcco 17191   Func cfunc 17779   Nat cnat 17869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-ixp 8832  df-func 17783  df-nat 17871
This theorem is referenced by:  isnat2  17876  natixp  17880  nati  17883  isnatd  49209
  Copyright terms: Public domain W3C validator