MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat Structured version   Visualization version   GIF version

Theorem isnat 17963
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
isnat.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
isnat.g (𝜑𝐾(𝐶 Func 𝐷)𝐿)
Assertion
Ref Expression
isnat (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
Distinct variable groups:   𝑥,,𝑦,𝐴   𝑥,𝐵,𝑦   𝐶,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   𝜑,,𝑥,𝑦   ,𝐾,𝑥,𝑦   ,𝐿,𝑥,𝑦   𝐷,,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnat
Dummy variables 𝑎 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
2 natfval.b . . . . . 6 𝐵 = (Base‘𝐶)
3 natfval.h . . . . . 6 𝐻 = (Hom ‘𝐶)
4 natfval.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 natfval.o . . . . . 6 · = (comp‘𝐷)
61, 2, 3, 4, 5natfval 17962 . . . . 5 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
76a1i 11 . . . 4 (𝜑𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
8 fvexd 6891 . . . . 5 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) ∈ V)
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → 𝑓 = ⟨𝐹, 𝐺⟩)
109fveq2d 6880 . . . . . 6 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) = (1st ‘⟨𝐹, 𝐺⟩))
11 relfunc 17875 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
12 isnat.f . . . . . . . . 9 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
13 brrelex12 5706 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
1411, 12, 13sylancr 587 . . . . . . . 8 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
15 op1stg 8000 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1614, 15syl 17 . . . . . . 7 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1810, 17eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) = 𝐹)
19 fvexd 6891 . . . . . 6 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) ∈ V)
20 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → 𝑔 = ⟨𝐾, 𝐿⟩)
2120fveq2d 6880 . . . . . . 7 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) = (1st ‘⟨𝐾, 𝐿⟩))
22 isnat.g . . . . . . . . . 10 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
23 brrelex12 5706 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐾(𝐶 Func 𝐷)𝐿) → (𝐾 ∈ V ∧ 𝐿 ∈ V))
2411, 22, 23sylancr 587 . . . . . . . . 9 (𝜑 → (𝐾 ∈ V ∧ 𝐿 ∈ V))
25 op1stg 8000 . . . . . . . . 9 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2624, 25syl 17 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2726ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2821, 27eqtrd 2770 . . . . . 6 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) = 𝐾)
29 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑟 = 𝐹)
3029fveq1d 6878 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑟𝑥) = (𝐹𝑥))
31 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑠 = 𝐾)
3231fveq1d 6878 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑠𝑥) = (𝐾𝑥))
3330, 32oveq12d 7423 . . . . . . . 8 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑟𝑥)𝐽(𝑠𝑥)) = ((𝐹𝑥)𝐽(𝐾𝑥)))
3433ixpeq2dv 8927 . . . . . . 7 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) = X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
3529fveq1d 6878 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑟𝑦) = (𝐹𝑦))
3630, 35opeq12d 4857 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ⟨(𝑟𝑥), (𝑟𝑦)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
3731fveq1d 6878 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑠𝑦) = (𝐾𝑦))
3836, 37oveq12d 7423 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦)) = (⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦)))
39 eqidd 2736 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑎𝑦) = (𝑎𝑦))
409ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑓 = ⟨𝐹, 𝐺⟩)
4140fveq2d 6880 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑓) = (2nd ‘⟨𝐹, 𝐺⟩))
42 op2ndg 8001 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4314, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4443ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4541, 44eqtrd 2770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑓) = 𝐺)
4645oveqd 7422 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑥(2nd𝑓)𝑦) = (𝑥𝐺𝑦))
4746fveq1d 6878 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥𝐺𝑦)‘))
4838, 39, 47oveq123d 7426 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)))
4930, 32opeq12d 4857 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ⟨(𝑟𝑥), (𝑠𝑥)⟩ = ⟨(𝐹𝑥), (𝐾𝑥)⟩)
5049, 37oveq12d 7423 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦)) = (⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦)))
5120adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑔 = ⟨𝐾, 𝐿⟩)
5251fveq2d 6880 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑔) = (2nd ‘⟨𝐾, 𝐿⟩))
53 op2ndg 8001 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5424, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5554ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5652, 55eqtrd 2770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑔) = 𝐿)
5756oveqd 7422 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑥(2nd𝑔)𝑦) = (𝑥𝐿𝑦))
5857fveq1d 6878 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥𝐿𝑦)‘))
59 eqidd 2736 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑎𝑥) = (𝑎𝑥))
6050, 58, 59oveq123d 7426 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)))
6148, 60eqeq12d 2751 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
6261ralbidv 3163 . . . . . . . 8 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
63622ralbidv 3205 . . . . . . 7 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
6434, 63rabeqbidv 3434 . . . . . 6 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → {𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
6519, 28, 64csbied2 3911 . . . . 5 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
668, 18, 65csbied2 3911 . . . 4 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
67 df-br 5120 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
6812, 67sylib 218 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
69 df-br 5120 . . . . 5 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
7022, 69sylib 218 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
71 ovex 7438 . . . . . . . 8 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
7271rgenw 3055 . . . . . . 7 𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
73 ixpexg 8936 . . . . . . 7 (∀𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V → X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V)
7472, 73ax-mp 5 . . . . . 6 X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
7574rabex 5309 . . . . 5 {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ∈ V
7675a1i 11 . . . 4 (𝜑 → {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ∈ V)
777, 66, 68, 70, 76ovmpod 7559 . . 3 (𝜑 → (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
7877eleq2d 2820 . 2 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ 𝐴 ∈ {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))}))
79 fveq1 6875 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑦) = (𝐴𝑦))
8079oveq1d 7420 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)))
81 fveq1 6875 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑥) = (𝐴𝑥))
8281oveq2d 7421 . . . . . 6 (𝑎 = 𝐴 → (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
8380, 82eqeq12d 2751 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8483ralbidv 3163 . . . 4 (𝑎 = 𝐴 → (∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
85842ralbidv 3205 . . 3 (𝑎 = 𝐴 → (∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8685elrab 3671 . 2 (𝐴 ∈ {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8778, 86bitrdi 287 1 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  csb 3874  cop 4607   class class class wbr 5119  Rel wrel 5659  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  Xcixp 8911  Basecbs 17228  Hom chom 17282  compcco 17283   Func cfunc 17867   Nat cnat 17957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-ixp 8912  df-func 17871  df-nat 17959
This theorem is referenced by:  isnat2  17964  natixp  17968  nati  17971  isnatd  49143
  Copyright terms: Public domain W3C validator