MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnat Structured version   Visualization version   GIF version

Theorem isnat 17215
Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1 𝑁 = (𝐶 Nat 𝐷)
natfval.b 𝐵 = (Base‘𝐶)
natfval.h 𝐻 = (Hom ‘𝐶)
natfval.j 𝐽 = (Hom ‘𝐷)
natfval.o · = (comp‘𝐷)
isnat.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
isnat.g (𝜑𝐾(𝐶 Func 𝐷)𝐿)
Assertion
Ref Expression
isnat (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
Distinct variable groups:   𝑥,,𝑦,𝐴   𝑥,𝐵,𝑦   𝐶,,𝑥,𝑦   ,𝐹,𝑥,𝑦   ,𝐺,𝑥,𝑦   ,𝐻   𝜑,,𝑥,𝑦   ,𝐾,𝑥,𝑦   ,𝐿,𝑥,𝑦   𝐷,,𝑥,𝑦
Allowed substitution hints:   𝐵()   · (𝑥,𝑦,)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦,)   𝑁(𝑥,𝑦,)

Proof of Theorem isnat
Dummy variables 𝑎 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
2 natfval.b . . . . . 6 𝐵 = (Base‘𝐶)
3 natfval.h . . . . . 6 𝐻 = (Hom ‘𝐶)
4 natfval.j . . . . . 6 𝐽 = (Hom ‘𝐷)
5 natfval.o . . . . . 6 · = (comp‘𝐷)
61, 2, 3, 4, 5natfval 17214 . . . . 5 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))})
76a1i 11 . . . 4 (𝜑𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))}))
8 fvexd 6674 . . . . 5 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) ∈ V)
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → 𝑓 = ⟨𝐹, 𝐺⟩)
109fveq2d 6663 . . . . . 6 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) = (1st ‘⟨𝐹, 𝐺⟩))
11 relfunc 17130 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
12 isnat.f . . . . . . . . 9 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
13 brrelex12 5592 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
1411, 12, 13sylancr 590 . . . . . . . 8 (𝜑 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
15 op1stg 7693 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1614, 15syl 17 . . . . . . 7 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1716adantr 484 . . . . . 6 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1810, 17eqtrd 2859 . . . . 5 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) = 𝐹)
19 fvexd 6674 . . . . . 6 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) ∈ V)
20 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → 𝑔 = ⟨𝐾, 𝐿⟩)
2120fveq2d 6663 . . . . . . 7 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) = (1st ‘⟨𝐾, 𝐿⟩))
22 isnat.g . . . . . . . . . 10 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
23 brrelex12 5592 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝐾(𝐶 Func 𝐷)𝐿) → (𝐾 ∈ V ∧ 𝐿 ∈ V))
2411, 22, 23sylancr 590 . . . . . . . . 9 (𝜑 → (𝐾 ∈ V ∧ 𝐿 ∈ V))
25 op1stg 7693 . . . . . . . . 9 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2624, 25syl 17 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2726ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st ‘⟨𝐾, 𝐿⟩) = 𝐾)
2821, 27eqtrd 2859 . . . . . 6 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) = 𝐾)
29 simplr 768 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑟 = 𝐹)
3029fveq1d 6661 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑟𝑥) = (𝐹𝑥))
31 simpr 488 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑠 = 𝐾)
3231fveq1d 6661 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑠𝑥) = (𝐾𝑥))
3330, 32oveq12d 7164 . . . . . . . 8 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑟𝑥)𝐽(𝑠𝑥)) = ((𝐹𝑥)𝐽(𝐾𝑥)))
3433ixpeq2dv 8469 . . . . . . 7 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) = X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
3529fveq1d 6661 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑟𝑦) = (𝐹𝑦))
3630, 35opeq12d 4798 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ⟨(𝑟𝑥), (𝑟𝑦)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
3731fveq1d 6661 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑠𝑦) = (𝐾𝑦))
3836, 37oveq12d 7164 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦)) = (⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦)))
39 eqidd 2825 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑎𝑦) = (𝑎𝑦))
409ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑓 = ⟨𝐹, 𝐺⟩)
4140fveq2d 6663 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑓) = (2nd ‘⟨𝐹, 𝐺⟩))
42 op2ndg 7694 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4314, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4443ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
4541, 44eqtrd 2859 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑓) = 𝐺)
4645oveqd 7163 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑥(2nd𝑓)𝑦) = (𝑥𝐺𝑦))
4746fveq1d 6661 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥𝐺𝑦)‘))
4838, 39, 47oveq123d 7167 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)))
4930, 32opeq12d 4798 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ⟨(𝑟𝑥), (𝑠𝑥)⟩ = ⟨(𝐹𝑥), (𝐾𝑥)⟩)
5049, 37oveq12d 7164 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦)) = (⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦)))
5120adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → 𝑔 = ⟨𝐾, 𝐿⟩)
5251fveq2d 6663 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑔) = (2nd ‘⟨𝐾, 𝐿⟩))
53 op2ndg 7694 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ V ∧ 𝐿 ∈ V) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5424, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5554ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
5652, 55eqtrd 2859 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (2nd𝑔) = 𝐿)
5756oveqd 7163 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑥(2nd𝑔)𝑦) = (𝑥𝐿𝑦))
5857fveq1d 6661 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥𝐿𝑦)‘))
59 eqidd 2825 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (𝑎𝑥) = (𝑎𝑥))
6050, 58, 59oveq123d 7167 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)))
6148, 60eqeq12d 2840 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
6261ralbidv 3192 . . . . . . . 8 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
63622ralbidv 3194 . . . . . . 7 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → (∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))))
6434, 63rabeqbidv 3471 . . . . . 6 ((((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) ∧ 𝑠 = 𝐾) → {𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
6519, 28, 64csbied2 3903 . . . . 5 (((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) ∧ 𝑟 = 𝐹) → (1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
668, 18, 65csbied2 3903 . . . 4 ((𝜑 ∧ (𝑓 = ⟨𝐹, 𝐺⟩ ∧ 𝑔 = ⟨𝐾, 𝐿⟩)) → (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥𝐵 ((𝑟𝑥)𝐽(𝑠𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩ · (𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩ · (𝑠𝑦))(𝑎𝑥))} = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
67 df-br 5054 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
6812, 67sylib 221 . . . 4 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
69 df-br 5054 . . . . 5 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
7022, 69sylib 221 . . . 4 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
71 ovex 7179 . . . . . . . 8 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
7271rgenw 3145 . . . . . . 7 𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
73 ixpexg 8478 . . . . . . 7 (∀𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V → X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V)
7472, 73ax-mp 5 . . . . . 6 X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∈ V
7574rabex 5222 . . . . 5 {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ∈ V
7675a1i 11 . . . 4 (𝜑 → {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ∈ V)
777, 66, 68, 70, 76ovmpod 7292 . . 3 (𝜑 → (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) = {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))})
7877eleq2d 2901 . 2 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ 𝐴 ∈ {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))}))
79 fveq1 6658 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑦) = (𝐴𝑦))
8079oveq1d 7161 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)))
81 fveq1 6658 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝑥) = (𝐴𝑥))
8281oveq2d 7162 . . . . . 6 (𝑎 = 𝐴 → (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
8380, 82eqeq12d 2840 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8483ralbidv 3192 . . . 4 (𝑎 = 𝐴 → (∀ ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ∀ ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
85842ralbidv 3194 . . 3 (𝑎 = 𝐴 → (∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥)) ↔ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8685elrab 3666 . 2 (𝐴 ∈ {𝑎X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∣ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝑎𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝑎𝑥))} ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
8778, 86syl6bb 290 1 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘)) = (((𝑥𝐿𝑦)‘)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  {crab 3137  Vcvv 3480  csb 3866  cop 4556   class class class wbr 5053  Rel wrel 5548  cfv 6344  (class class class)co 7146  cmpo 7148  1st c1st 7679  2nd c2nd 7680  Xcixp 8453  Basecbs 16481  Hom chom 16574  compcco 16575   Func cfunc 17122   Nat cnat 17209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-ixp 8454  df-func 17126  df-nat 17211
This theorem is referenced by:  isnat2  17216  natixp  17220  nati  17223
  Copyright terms: Public domain W3C validator