MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcval Structured version   Visualization version   GIF version

Theorem catcval 18062
Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcval.c 𝐶 = (CatCat‘𝑈)
catcval.u (𝜑𝑈𝑉)
catcval.b (𝜑𝐵 = (𝑈 ∩ Cat))
catcval.h (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
catcval.o (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
Assertion
Ref Expression
catcval (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑥,𝑣,𝑦,𝑧,𝐵   𝜑,𝑣,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem catcval
Dummy variables 𝑢 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcval.c . 2 𝐶 = (CatCat‘𝑈)
2 df-catc 18061 . . 3 CatCat = (𝑢 ∈ V ↦ (𝑢 ∩ Cat) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
3 vex 3451 . . . . . 6 𝑢 ∈ V
43inex1 5272 . . . . 5 (𝑢 ∩ Cat) ∈ V
54a1i 11 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) ∈ V)
6 simpr 484 . . . . . 6 ((𝜑𝑢 = 𝑈) → 𝑢 = 𝑈)
76ineq1d 4182 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) = (𝑈 ∩ Cat))
8 catcval.b . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Cat))
98adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝐵 = (𝑈 ∩ Cat))
107, 9eqtr4d 2767 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) = 𝐵)
11 simpr 484 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1211opeq2d 4844 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
13 eqidd 2730 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥 Func 𝑦) = (𝑥 Func 𝑦))
1411, 11, 13mpoeq123dv 7464 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
15 catcval.h . . . . . . . 8 (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
1615ad2antrr 726 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
1714, 16eqtr4d 2767 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦)) = 𝐻)
1817opeq2d 4844 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
1911sqxpeqd 5670 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
20 eqidd 2730 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)) = (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))
2119, 11, 20mpoeq123dv 7464 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
22 catcval.o . . . . . . . 8 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
2322ad2antrr 726 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
2421, 23eqtr4d 2767 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = · )
2524opeq2d 4844 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
2612, 18, 25tpeq123d 4712 . . . 4 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
275, 10, 26csbied2 3899 . . 3 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Cat) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
28 catcval.u . . . 4 (𝜑𝑈𝑉)
2928elexd 3471 . . 3 (𝜑𝑈 ∈ V)
30 tpex 7722 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
3130a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
322, 27, 29, 31fvmptd2 6976 . 2 (𝜑 → (CatCat‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
331, 32eqtrid 2776 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  cin 3913  {ctp 4593  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  2nd c2nd 7967  ndxcnx 17163  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625   Func cfunc 17816  func ccofu 17818  CatCatccatc 18060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-oprab 7391  df-mpo 7392  df-catc 18061
This theorem is referenced by:  catcbas  18063  catchomfval  18064  catccofval  18066
  Copyright terms: Public domain W3C validator