Step | Hyp | Ref
| Expression |
1 | | catcval.c |
. 2
β’ πΆ = (CatCatβπ) |
2 | | df-catc 17945 |
. . 3
β’ CatCat =
(π’ β V β¦
β¦(π’ β©
Cat) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ Func π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β©}) |
3 | | vex 3447 |
. . . . . 6
β’ π’ β V |
4 | 3 | inex1 5272 |
. . . . 5
β’ (π’ β© Cat) β
V |
5 | 4 | a1i 11 |
. . . 4
β’ ((π β§ π’ = π) β (π’ β© Cat) β V) |
6 | | simpr 485 |
. . . . . 6
β’ ((π β§ π’ = π) β π’ = π) |
7 | 6 | ineq1d 4169 |
. . . . 5
β’ ((π β§ π’ = π) β (π’ β© Cat) = (π β© Cat)) |
8 | | catcval.b |
. . . . . 6
β’ (π β π΅ = (π β© Cat)) |
9 | 8 | adantr 481 |
. . . . 5
β’ ((π β§ π’ = π) β π΅ = (π β© Cat)) |
10 | 7, 9 | eqtr4d 2780 |
. . . 4
β’ ((π β§ π’ = π) β (π’ β© Cat) = π΅) |
11 | | simpr 485 |
. . . . . 6
β’ (((π β§ π’ = π) β§ π = π΅) β π = π΅) |
12 | 11 | opeq2d 4835 |
. . . . 5
β’ (((π β§ π’ = π) β§ π = π΅) β β¨(Baseβndx), πβ© = β¨(Baseβndx),
π΅β©) |
13 | | eqidd 2738 |
. . . . . . . 8
β’ (((π β§ π’ = π) β§ π = π΅) β (π₯ Func π¦) = (π₯ Func π¦)) |
14 | 11, 11, 13 | mpoeq123dv 7426 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β (π₯ β π, π¦ β π β¦ (π₯ Func π¦)) = (π₯ β π΅, π¦ β π΅ β¦ (π₯ Func π¦))) |
15 | | catcval.h |
. . . . . . . 8
β’ (π β π» = (π₯ β π΅, π¦ β π΅ β¦ (π₯ Func π¦))) |
16 | 15 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β π» = (π₯ β π΅, π¦ β π΅ β¦ (π₯ Func π¦))) |
17 | 14, 16 | eqtr4d 2780 |
. . . . . 6
β’ (((π β§ π’ = π) β§ π = π΅) β (π₯ β π, π¦ β π β¦ (π₯ Func π¦)) = π») |
18 | 17 | opeq2d 4835 |
. . . . 5
β’ (((π β§ π’ = π) β§ π = π΅) β β¨(Hom βndx), (π₯ β π, π¦ β π β¦ (π₯ Func π¦))β© = β¨(Hom βndx), π»β©) |
19 | 11 | sqxpeqd 5663 |
. . . . . . . 8
β’ (((π β§ π’ = π) β§ π = π΅) β (π Γ π) = (π΅ Γ π΅)) |
20 | | eqidd 2738 |
. . . . . . . 8
β’ (((π β§ π’ = π) β§ π = π΅) β (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)) = (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π))) |
21 | 19, 11, 20 | mpoeq123dv 7426 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π))) = (π£ β (π΅ Γ π΅), π§ β π΅ β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))) |
22 | | catcval.o |
. . . . . . . 8
β’ (π β Β· = (π£ β (π΅ Γ π΅), π§ β π΅ β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))) |
23 | 22 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β Β· = (π£ β (π΅ Γ π΅), π§ β π΅ β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))) |
24 | 21, 23 | eqtr4d 2780 |
. . . . . 6
β’ (((π β§ π’ = π) β§ π = π΅) β (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π))) = Β· ) |
25 | 24 | opeq2d 4835 |
. . . . 5
β’ (((π β§ π’ = π) β§ π = π΅) β β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β© =
β¨(compβndx), Β·
β©) |
26 | 12, 18, 25 | tpeq123d 4707 |
. . . 4
β’ (((π β§ π’ = π) β§ π = π΅) β {β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ Func π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β©} =
{β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx),
Β·
β©}) |
27 | 5, 10, 26 | csbied2 3893 |
. . 3
β’ ((π β§ π’ = π) β β¦(π’ β© Cat) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ Func π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β©} =
{β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx),
Β·
β©}) |
28 | | catcval.u |
. . . 4
β’ (π β π β π) |
29 | 28 | elexd 3463 |
. . 3
β’ (π β π β V) |
30 | | tpex 7673 |
. . . 4
β’
{β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx),
Β·
β©} β V |
31 | 30 | a1i 11 |
. . 3
β’ (π β {β¨(Baseβndx),
π΅β©, β¨(Hom
βndx), π»β©,
β¨(compβndx), Β· β©} β
V) |
32 | 2, 27, 29, 31 | fvmptd2 6953 |
. 2
β’ (π β (CatCatβπ) = {β¨(Baseβndx),
π΅β©, β¨(Hom
βndx), π»β©,
β¨(compβndx), Β·
β©}) |
33 | 1, 32 | eqtrid 2789 |
1
β’ (π β πΆ = {β¨(Baseβndx), π΅β©, β¨(Hom βndx),
π»β©,
β¨(compβndx), Β·
β©}) |