MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcval Structured version   Visualization version   GIF version

Theorem catcval 17946
Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcval.c 𝐢 = (CatCatβ€˜π‘ˆ)
catcval.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
catcval.b (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Cat))
catcval.h (πœ‘ β†’ 𝐻 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ Func 𝑦)))
catcval.o (πœ‘ β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓))))
Assertion
Ref Expression
catcval (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
Distinct variable groups:   π‘₯,𝑣,𝑦,𝑧,𝐡   πœ‘,𝑣,π‘₯,𝑦,𝑧   𝑣,π‘ˆ,π‘₯,𝑦,𝑧   𝑓,𝑔,𝑣,π‘₯,𝑦,𝑧
Allowed substitution hints:   πœ‘(𝑓,𝑔)   𝐡(𝑓,𝑔)   𝐢(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   Β· (π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   π‘ˆ(𝑓,𝑔)   𝐻(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem catcval
Dummy variables 𝑒 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcval.c . 2 𝐢 = (CatCatβ€˜π‘ˆ)
2 df-catc 17945 . . 3 CatCat = (𝑒 ∈ V ↦ ⦋(𝑒 ∩ Cat) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ Func 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓)))⟩})
3 vex 3447 . . . . . 6 𝑒 ∈ V
43inex1 5272 . . . . 5 (𝑒 ∩ Cat) ∈ V
54a1i 11 . . . 4 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑒 ∩ Cat) ∈ V)
6 simpr 485 . . . . . 6 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ 𝑒 = π‘ˆ)
76ineq1d 4169 . . . . 5 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑒 ∩ Cat) = (π‘ˆ ∩ Cat))
8 catcval.b . . . . . 6 (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Cat))
98adantr 481 . . . . 5 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ 𝐡 = (π‘ˆ ∩ Cat))
107, 9eqtr4d 2780 . . . 4 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑒 ∩ Cat) = 𝐡)
11 simpr 485 . . . . . 6 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ 𝑏 = 𝐡)
1211opeq2d 4835 . . . . 5 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ ⟨(Baseβ€˜ndx), π‘βŸ© = ⟨(Baseβ€˜ndx), 𝐡⟩)
13 eqidd 2738 . . . . . . . 8 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (π‘₯ Func 𝑦) = (π‘₯ Func 𝑦))
1411, 11, 13mpoeq123dv 7426 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ Func 𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ Func 𝑦)))
15 catcval.h . . . . . . . 8 (πœ‘ β†’ 𝐻 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ Func 𝑦)))
1615ad2antrr 724 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ 𝐻 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ Func 𝑦)))
1714, 16eqtr4d 2780 . . . . . 6 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ Func 𝑦)) = 𝐻)
1817opeq2d 4835 . . . . 5 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ Func 𝑦))⟩ = ⟨(Hom β€˜ndx), 𝐻⟩)
1911sqxpeqd 5663 . . . . . . . 8 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑏 Γ— 𝑏) = (𝐡 Γ— 𝐡))
20 eqidd 2738 . . . . . . . 8 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓)) = (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓)))
2119, 11, 20mpoeq123dv 7426 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓))) = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓))))
22 catcval.o . . . . . . . 8 (πœ‘ β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓))))
2322ad2antrr 724 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓))))
2421, 23eqtr4d 2780 . . . . . 6 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓))) = Β· )
2524opeq2d 4835 . . . . 5 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓)))⟩ = ⟨(compβ€˜ndx), Β· ⟩)
2612, 18, 25tpeq123d 4707 . . . 4 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ {⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ Func 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓)))⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
275, 10, 26csbied2 3893 . . 3 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ ⦋(𝑒 ∩ Cat) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ Func 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) Func 𝑧), 𝑓 ∈ ( Func β€˜π‘£) ↦ (𝑔 ∘func 𝑓)))⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
28 catcval.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
2928elexd 3463 . . 3 (πœ‘ β†’ π‘ˆ ∈ V)
30 tpex 7673 . . . 4 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩} ∈ V
3130a1i 11 . . 3 (πœ‘ β†’ {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩} ∈ V)
322, 27, 29, 31fvmptd2 6953 . 2 (πœ‘ β†’ (CatCatβ€˜π‘ˆ) = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
331, 32eqtrid 2789 1 (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3443  β¦‹csb 3853   ∩ cin 3907  {ctp 4588  βŸ¨cop 4590   Γ— cxp 5629  β€˜cfv 6493  (class class class)co 7351   ∈ cmpo 7353  2nd c2nd 7912  ndxcnx 17025  Basecbs 17043  Hom chom 17104  compcco 17105  Catccat 17504   Func cfunc 17700   ∘func ccofu 17702  CatCatccatc 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6445  df-fun 6495  df-fv 6501  df-oprab 7355  df-mpo 7356  df-catc 17945
This theorem is referenced by:  catcbas  17947  catchomfval  17948  catccofval  17950
  Copyright terms: Public domain W3C validator