MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stfval Structured version   Visualization version   GIF version

Theorem 1stfval 18143
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
1stfval.p 𝑃 = (𝐶 1stF 𝐷)
Assertion
Ref Expression
1stfval (𝜑𝑃 = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem 1stfval
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfval.p . 2 𝑃 = (𝐶 1stF 𝐷)
2 1stfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 1stfval.d . . 3 (𝜑𝐷 ∈ Cat)
4 fvex 6905 . . . . . . 7 (Base‘𝑐) ∈ V
5 fvex 6905 . . . . . . 7 (Base‘𝑑) ∈ V
64, 5xpex 7740 . . . . . 6 ((Base‘𝑐) × (Base‘𝑑)) ∈ V
76a1i 11 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) ∈ V)
8 simpl 484 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6896 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 simpr 486 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
1110fveq2d 6896 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷))
129, 11xpeq12d 5708 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝐶) × (Base‘𝐷)))
13 1stfval.t . . . . . . . 8 𝑇 = (𝐶 ×c 𝐷)
14 eqid 2733 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2733 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
1613, 14, 15xpcbas 18130 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
17 1stfval.b . . . . . . 7 𝐵 = (Base‘𝑇)
1816, 17eqtr4i 2764 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = 𝐵
1912, 18eqtrdi 2789 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = 𝐵)
20 simpr 486 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
2120reseq2d 5982 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (1st𝑏) = (1st𝐵))
22 simpll 766 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
23 simplr 768 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷)
2422, 23oveq12d 7427 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷))
2524, 13eqtr4di 2791 . . . . . . . . . . 11 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = 𝑇)
2625fveq2d 6896 . . . . . . . . . 10 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘𝑇))
27 1stfval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝑇)
2826, 27eqtr4di 2791 . . . . . . . . 9 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = 𝐻)
2928oveqd 7426 . . . . . . . 8 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦) = (𝑥𝐻𝑦))
3029reseq2d 5982 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)) = (1st ↾ (𝑥𝐻𝑦)))
3120, 20, 30mpoeq123dv 7484 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦))))
3221, 31opeq12d 4882 . . . . 5 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(1st𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩)
337, 19, 32csbied2 3934 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(1st𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩)
34 df-1stf 18125 . . . 4 1stF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(1st𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
35 opex 5465 . . . 4 ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩ ∈ V
3633, 34, 35ovmpoa 7563 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 1stF 𝐷) = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩)
372, 3, 36syl2anc 585 . 2 (𝜑 → (𝐶 1stF 𝐷) = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩)
381, 37eqtrid 2785 1 (𝜑𝑃 = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  csb 3894  cop 4635   × cxp 5675  cres 5679  cfv 6544  (class class class)co 7409  cmpo 7411  1st c1st 7973  Basecbs 17144  Hom chom 17208  Catccat 17608   ×c cxpc 18120   1stF c1stf 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-slot 17115  df-ndx 17127  df-base 17145  df-hom 17221  df-cco 17222  df-xpc 18124  df-1stf 18125
This theorem is referenced by:  1stf1  18144  1stf2  18145  1stfcl  18149
  Copyright terms: Public domain W3C validator