![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stfval | Structured version Visualization version GIF version |
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
1stfval.p | ⊢ 𝑃 = (𝐶 1stF 𝐷) |
Ref | Expression |
---|---|
1stfval | ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.p | . 2 ⊢ 𝑃 = (𝐶 1stF 𝐷) | |
2 | 1stfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | 1stfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | fvex 6342 | . . . . . . 7 ⊢ (Base‘𝑐) ∈ V | |
5 | fvex 6342 | . . . . . . 7 ⊢ (Base‘𝑑) ∈ V | |
6 | 4, 5 | xpex 7109 | . . . . . 6 ⊢ ((Base‘𝑐) × (Base‘𝑑)) ∈ V |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) ∈ V) |
8 | simpl 468 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶) | |
9 | 8 | fveq2d 6336 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶)) |
10 | simpr 471 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) | |
11 | 10 | fveq2d 6336 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷)) |
12 | 9, 11 | xpeq12d 5280 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝐶) × (Base‘𝐷))) |
13 | 1stfval.t | . . . . . . . 8 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
14 | eqid 2771 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
15 | eqid 2771 | . . . . . . . 8 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | 13, 14, 15 | xpcbas 17026 | . . . . . . 7 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇) |
17 | 1stfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑇) | |
18 | 16, 17 | eqtr4i 2796 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = 𝐵 |
19 | 12, 18 | syl6eq 2821 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = 𝐵) |
20 | simpr 471 | . . . . . . 7 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) | |
21 | 20 | reseq2d 5534 | . . . . . 6 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (1st ↾ 𝑏) = (1st ↾ 𝐵)) |
22 | simpll 750 | . . . . . . . . . . . . 13 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶) | |
23 | simplr 752 | . . . . . . . . . . . . 13 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) | |
24 | 22, 23 | oveq12d 6811 | . . . . . . . . . . . 12 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷)) |
25 | 24, 13 | syl6eqr 2823 | . . . . . . . . . . 11 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = 𝑇) |
26 | 25 | fveq2d 6336 | . . . . . . . . . 10 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘𝑇)) |
27 | 1stfval.h | . . . . . . . . . 10 ⊢ 𝐻 = (Hom ‘𝑇) | |
28 | 26, 27 | syl6eqr 2823 | . . . . . . . . 9 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = 𝐻) |
29 | 28 | oveqd 6810 | . . . . . . . 8 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦) = (𝑥𝐻𝑦)) |
30 | 29 | reseq2d 5534 | . . . . . . 7 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)) = (1st ↾ (𝑥𝐻𝑦))) |
31 | 20, 20, 30 | mpt2eq123dv 6864 | . . . . . 6 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))) |
32 | 21, 31 | opeq12d 4547 | . . . . 5 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
33 | 7, 19, 32 | csbied2 3710 | . . . 4 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑐) × (Base‘𝑑)) / 𝑏⦌〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
34 | df-1stf 17021 | . . . 4 ⊢ 1stF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ⦋((Base‘𝑐) × (Base‘𝑑)) / 𝑏⦌〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉) | |
35 | opex 5060 | . . . 4 ⊢ 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉 ∈ V | |
36 | 33, 34, 35 | ovmpt2a 6938 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 1stF 𝐷) = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
37 | 2, 3, 36 | syl2anc 573 | . 2 ⊢ (𝜑 → (𝐶 1stF 𝐷) = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
38 | 1, 37 | syl5eq 2817 | 1 ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ⦋csb 3682 〈cop 4322 × cxp 5247 ↾ cres 5251 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 1st c1st 7313 Basecbs 16064 Hom chom 16160 Catccat 16532 ×c cxpc 17016 1stF c1stf 17017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-hom 16174 df-cco 16175 df-xpc 17020 df-1stf 17021 |
This theorem is referenced by: 1stf1 17040 1stf2 17041 1stfcl 17045 |
Copyright terms: Public domain | W3C validator |