MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofval Structured version   Visualization version   GIF version

Theorem hofval 17970
Description: Value of the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from (oppCat‘𝐶) × 𝐶 to SetCat, whose object part is the hom-function Hom, and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hofval.b 𝐵 = (Base‘𝐶)
hofval.h 𝐻 = (Hom ‘𝐶)
hofval.o · = (comp‘𝐶)
Assertion
Ref Expression
hofval (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑥,𝑦,𝐵   𝜑,𝑓,𝑔,,𝑥,𝑦   𝐶,𝑓,𝑔,,𝑥,𝑦   𝑓,𝐻,𝑔,,𝑥,𝑦   · ,𝑓,𝑔,,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem hofval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . 2 𝑀 = (HomF𝐶)
2 df-hof 17968 . . 3 HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩)
3 simpr 485 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
43fveq2d 6778 . . . 4 ((𝜑𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
5 fvexd 6789 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) ∈ V)
63fveq2d 6778 . . . . . 6 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = (Base‘𝐶))
7 hofval.b . . . . . 6 𝐵 = (Base‘𝐶)
86, 7eqtr4di 2796 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = 𝐵)
9 simpr 485 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
109sqxpeqd 5621 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
11 simplr 766 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
1211fveq2d 6778 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
13 hofval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
1412, 13eqtr4di 2796 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1514oveqd 7292 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((1st𝑦)(Hom ‘𝑐)(1st𝑥)) = ((1st𝑦)𝐻(1st𝑥)))
1614oveqd 7292 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) = ((2nd𝑥)𝐻(2nd𝑦)))
1714fveq1d 6776 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
1811fveq2d 6778 . . . . . . . . . . 11 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = (comp‘𝐶))
19 hofval.o . . . . . . . . . . 11 · = (comp‘𝐶)
2018, 19eqtr4di 2796 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = · )
2120oveqd 7292 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦)) = (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)))
2220oveqd 7292 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥(comp‘𝑐)(2nd𝑦)) = (𝑥 · (2nd𝑦)))
2322oveqd 7292 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑔(𝑥(comp‘𝑐)(2nd𝑦))) = (𝑔(𝑥 · (2nd𝑦))))
24 eqidd 2739 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
2521, 23, 24oveq123d 7296 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓) = ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))
2617, 25mpteq12dv 5165 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)) = ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))
2715, 16, 26mpoeq123dv 7350 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))
2810, 10, 27mpoeq123dv 7350 . . . . 5 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
295, 8, 28csbied2 3872 . . . 4 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
304, 29opeq12d 4812 . . 3 ((𝜑𝑐 = 𝐶) → ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
31 hofval.c . . 3 (𝜑𝐶 ∈ Cat)
32 opex 5379 . . . 4 ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V
3332a1i 11 . . 3 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V)
342, 30, 31, 33fvmptd2 6883 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
351, 34eqtrid 2790 1 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  csb 3832  cop 4567  cmpt 5157   × cxp 5587  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Homf chomf 17375  HomFchof 17966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-hof 17968
This theorem is referenced by:  hof1fval  17971  hof2fval  17973  hofcl  17977  hofpropd  17985
  Copyright terms: Public domain W3C validator