MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf2 Structured version   Visualization version   GIF version

Theorem evlf2 18124
Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfval.e 𝐸 = (𝐶 evalF 𝐷)
evlfval.c (𝜑𝐶 ∈ Cat)
evlfval.d (𝜑𝐷 ∈ Cat)
evlfval.b 𝐵 = (Base‘𝐶)
evlfval.h 𝐻 = (Hom ‘𝐶)
evlfval.o · = (comp‘𝐷)
evlfval.n 𝑁 = (𝐶 Nat 𝐷)
evlf2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
evlf2.x (𝜑𝑋𝐵)
evlf2.y (𝜑𝑌𝐵)
evlf2.l 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
Assertion
Ref Expression
evlf2 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Distinct variable groups:   𝑔,𝑎,𝐶   𝐷,𝑎,𝑔   𝑔,𝐻   𝐹,𝑎,𝑔   𝑁,𝑎,𝑔   𝐺,𝑎,𝑔   𝜑,𝑎,𝑔   · ,𝑎,𝑔   𝑋,𝑎,𝑔   𝑌,𝑎,𝑔
Allowed substitution hints:   𝐵(𝑔,𝑎)   𝐸(𝑔,𝑎)   𝐻(𝑎)   𝐿(𝑔,𝑎)

Proof of Theorem evlf2
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf2.l . 2 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
2 evlfval.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
3 evlfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 evlfval.d . . . . 5 (𝜑𝐷 ∈ Cat)
5 evlfval.b . . . . 5 𝐵 = (Base‘𝐶)
6 evlfval.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 evlfval.o . . . . 5 · = (comp‘𝐷)
8 evlfval.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
92, 3, 4, 5, 6, 7, 8evlfval 18123 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
10 ovex 7382 . . . . . 6 (𝐶 Func 𝐷) ∈ V
115fvexi 6836 . . . . . 6 𝐵 ∈ V
1210, 11mpoex 8014 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
1310, 11xpex 7689 . . . . . 6 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1413, 13mpoex 8014 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1512, 14op2ndd 7935 . . . 4 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
169, 15syl 17 . . 3 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
17 fvexd 6837 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) ∈ V)
18 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → 𝑥 = ⟨𝐹, 𝑋⟩)
1918fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = (1st ‘⟨𝐹, 𝑋⟩))
20 evlf2.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
21 evlf2.x . . . . . . 7 (𝜑𝑋𝐵)
22 op1stg 7936 . . . . . . 7 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2320, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2423adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2519, 24eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = 𝐹)
26 fvexd 6837 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) ∈ V)
27 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → 𝑦 = ⟨𝐺, 𝑌⟩)
2827fveq2d 6826 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = (1st ‘⟨𝐺, 𝑌⟩))
29 evlf2.g . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
30 evlf2.y . . . . . . . 8 (𝜑𝑌𝐵)
31 op1stg 7936 . . . . . . . 8 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3229, 30, 31syl2anc 584 . . . . . . 7 (𝜑 → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3332ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3428, 33eqtrd 2764 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = 𝐺)
35 simplr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑚 = 𝐹)
36 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑛 = 𝐺)
3735, 36oveq12d 7367 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑚𝑁𝑛) = (𝐹𝑁𝐺))
3818ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑥 = ⟨𝐹, 𝑋⟩)
3938fveq2d 6826 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = (2nd ‘⟨𝐹, 𝑋⟩))
40 op2ndg 7937 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4120, 21, 40syl2anc 584 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4241ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4339, 42eqtrd 2764 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = 𝑋)
4427adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑦 = ⟨𝐺, 𝑌⟩)
4544fveq2d 6826 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = (2nd ‘⟨𝐺, 𝑌⟩))
46 op2ndg 7937 . . . . . . . . . 10 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4729, 30, 46syl2anc 584 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4847ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4945, 48eqtrd 2764 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = 𝑌)
5043, 49oveq12d 7367 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑋𝐻𝑌))
5135fveq2d 6826 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑚) = (1st𝐹))
5251, 43fveq12d 6829 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑥)) = ((1st𝐹)‘𝑋))
5351, 49fveq12d 6829 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑦)) = ((1st𝐹)‘𝑌))
5452, 53opeq12d 4832 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩)
5536fveq2d 6826 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑛) = (1st𝐺))
5655, 49fveq12d 6829 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑛)‘(2nd𝑦)) = ((1st𝐺)‘𝑌))
5754, 56oveq12d 7367 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦))) = (⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌)))
5849fveq2d 6826 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎‘(2nd𝑦)) = (𝑎𝑌))
5935fveq2d 6826 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑚) = (2nd𝐹))
6059, 43, 49oveq123d 7370 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)(2nd𝑚)(2nd𝑦)) = (𝑋(2nd𝐹)𝑌))
6160fveq1d 6824 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔) = ((𝑋(2nd𝐹)𝑌)‘𝑔))
6257, 58, 61oveq123d 7370 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)) = ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔)))
6337, 50, 62mpoeq123dv 7424 . . . . 5 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6426, 34, 63csbied2 3888 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6517, 25, 64csbied2 3888 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6620, 21opelxpd 5658 . . 3 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
6729, 30opelxpd 5658 . . 3 (𝜑 → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
68 ovex 7382 . . . . 5 (𝐹𝑁𝐺) ∈ V
69 ovex 7382 . . . . 5 (𝑋𝐻𝑌) ∈ V
7068, 69mpoex 8014 . . . 4 (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V
7170a1i 11 . . 3 (𝜑 → (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V)
7216, 65, 66, 67, 71ovmpod 7501 . 2 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
731, 72eqtrid 2776 1 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  csb 3851  cop 4583   × cxp 5617  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570   Func cfunc 17761   Nat cnat 17851   evalF cevlf 18115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-evlf 18119
This theorem is referenced by:  evlf2val  18125  evlfcl  18128
  Copyright terms: Public domain W3C validator