MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf2 Structured version   Visualization version   GIF version

Theorem evlf2 17126
Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfval.e 𝐸 = (𝐶 evalF 𝐷)
evlfval.c (𝜑𝐶 ∈ Cat)
evlfval.d (𝜑𝐷 ∈ Cat)
evlfval.b 𝐵 = (Base‘𝐶)
evlfval.h 𝐻 = (Hom ‘𝐶)
evlfval.o · = (comp‘𝐷)
evlfval.n 𝑁 = (𝐶 Nat 𝐷)
evlf2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
evlf2.x (𝜑𝑋𝐵)
evlf2.y (𝜑𝑌𝐵)
evlf2.l 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
Assertion
Ref Expression
evlf2 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Distinct variable groups:   𝑔,𝑎,𝐶   𝐷,𝑎,𝑔   𝑔,𝐻   𝐹,𝑎,𝑔   𝑁,𝑎,𝑔   𝐺,𝑎,𝑔   𝜑,𝑎,𝑔   · ,𝑎,𝑔   𝑋,𝑎,𝑔   𝑌,𝑎,𝑔
Allowed substitution hints:   𝐵(𝑔,𝑎)   𝐸(𝑔,𝑎)   𝐻(𝑎)   𝐿(𝑔,𝑎)

Proof of Theorem evlf2
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf2.l . 2 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
2 evlfval.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
3 evlfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 evlfval.d . . . . 5 (𝜑𝐷 ∈ Cat)
5 evlfval.b . . . . 5 𝐵 = (Base‘𝐶)
6 evlfval.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 evlfval.o . . . . 5 · = (comp‘𝐷)
8 evlfval.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
92, 3, 4, 5, 6, 7, 8evlfval 17125 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
10 ovex 6874 . . . . . 6 (𝐶 Func 𝐷) ∈ V
115fvexi 6389 . . . . . 6 𝐵 ∈ V
1210, 11mpt2ex 7448 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
1310, 11xpex 7160 . . . . . 6 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1413, 13mpt2ex 7448 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1512, 14op2ndd 7377 . . . 4 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
169, 15syl 17 . . 3 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
17 fvexd 6390 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) ∈ V)
18 simprl 787 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → 𝑥 = ⟨𝐹, 𝑋⟩)
1918fveq2d 6379 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = (1st ‘⟨𝐹, 𝑋⟩))
20 evlf2.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
21 evlf2.x . . . . . . 7 (𝜑𝑋𝐵)
22 op1stg 7378 . . . . . . 7 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2320, 21, 22syl2anc 579 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2423adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2519, 24eqtrd 2799 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = 𝐹)
26 fvexd 6390 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) ∈ V)
27 simplrr 796 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → 𝑦 = ⟨𝐺, 𝑌⟩)
2827fveq2d 6379 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = (1st ‘⟨𝐺, 𝑌⟩))
29 evlf2.g . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
30 evlf2.y . . . . . . . 8 (𝜑𝑌𝐵)
31 op1stg 7378 . . . . . . . 8 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3229, 30, 31syl2anc 579 . . . . . . 7 (𝜑 → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3332ad2antrr 717 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3428, 33eqtrd 2799 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = 𝐺)
35 simplr 785 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑚 = 𝐹)
36 simpr 477 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑛 = 𝐺)
3735, 36oveq12d 6860 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑚𝑁𝑛) = (𝐹𝑁𝐺))
3818ad2antrr 717 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑥 = ⟨𝐹, 𝑋⟩)
3938fveq2d 6379 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = (2nd ‘⟨𝐹, 𝑋⟩))
40 op2ndg 7379 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4120, 21, 40syl2anc 579 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4241ad3antrrr 721 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4339, 42eqtrd 2799 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = 𝑋)
4427adantr 472 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑦 = ⟨𝐺, 𝑌⟩)
4544fveq2d 6379 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = (2nd ‘⟨𝐺, 𝑌⟩))
46 op2ndg 7379 . . . . . . . . . 10 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4729, 30, 46syl2anc 579 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4847ad3antrrr 721 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4945, 48eqtrd 2799 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = 𝑌)
5043, 49oveq12d 6860 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑋𝐻𝑌))
5135fveq2d 6379 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑚) = (1st𝐹))
5251, 43fveq12d 6382 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑥)) = ((1st𝐹)‘𝑋))
5351, 49fveq12d 6382 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑦)) = ((1st𝐹)‘𝑌))
5452, 53opeq12d 4567 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩)
5536fveq2d 6379 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑛) = (1st𝐺))
5655, 49fveq12d 6382 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑛)‘(2nd𝑦)) = ((1st𝐺)‘𝑌))
5754, 56oveq12d 6860 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦))) = (⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌)))
5849fveq2d 6379 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎‘(2nd𝑦)) = (𝑎𝑌))
5935fveq2d 6379 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑚) = (2nd𝐹))
6059, 43, 49oveq123d 6863 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)(2nd𝑚)(2nd𝑦)) = (𝑋(2nd𝐹)𝑌))
6160fveq1d 6377 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔) = ((𝑋(2nd𝐹)𝑌)‘𝑔))
6257, 58, 61oveq123d 6863 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)) = ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔)))
6337, 50, 62mpt2eq123dv 6915 . . . . 5 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6426, 34, 63csbied2 3719 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6517, 25, 64csbied2 3719 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
66 opelxpi 5314 . . . 4 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
6720, 21, 66syl2anc 579 . . 3 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
68 opelxpi 5314 . . . 4 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
6929, 30, 68syl2anc 579 . . 3 (𝜑 → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
70 ovex 6874 . . . . 5 (𝐹𝑁𝐺) ∈ V
71 ovex 6874 . . . . 5 (𝑋𝐻𝑌) ∈ V
7270, 71mpt2ex 7448 . . . 4 (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V
7372a1i 11 . . 3 (𝜑 → (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V)
7416, 65, 67, 69, 73ovmpt2d 6986 . 2 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
751, 74syl5eq 2811 1 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  csb 3691  cop 4340   × cxp 5275  cfv 6068  (class class class)co 6842  cmpt2 6844  1st c1st 7364  2nd c2nd 7365  Basecbs 16132  Hom chom 16227  compcco 16228  Catccat 16592   Func cfunc 16781   Nat cnat 16868   evalF cevlf 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-evlf 17121
This theorem is referenced by:  evlf2val  17127  evlfcl  17130
  Copyright terms: Public domain W3C validator