MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf2 Structured version   Visualization version   GIF version

Theorem evlf2 18275
Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfval.e 𝐸 = (𝐶 evalF 𝐷)
evlfval.c (𝜑𝐶 ∈ Cat)
evlfval.d (𝜑𝐷 ∈ Cat)
evlfval.b 𝐵 = (Base‘𝐶)
evlfval.h 𝐻 = (Hom ‘𝐶)
evlfval.o · = (comp‘𝐷)
evlfval.n 𝑁 = (𝐶 Nat 𝐷)
evlf2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
evlf2.x (𝜑𝑋𝐵)
evlf2.y (𝜑𝑌𝐵)
evlf2.l 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
Assertion
Ref Expression
evlf2 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Distinct variable groups:   𝑔,𝑎,𝐶   𝐷,𝑎,𝑔   𝑔,𝐻   𝐹,𝑎,𝑔   𝑁,𝑎,𝑔   𝐺,𝑎,𝑔   𝜑,𝑎,𝑔   · ,𝑎,𝑔   𝑋,𝑎,𝑔   𝑌,𝑎,𝑔
Allowed substitution hints:   𝐵(𝑔,𝑎)   𝐸(𝑔,𝑎)   𝐻(𝑎)   𝐿(𝑔,𝑎)

Proof of Theorem evlf2
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf2.l . 2 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
2 evlfval.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
3 evlfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 evlfval.d . . . . 5 (𝜑𝐷 ∈ Cat)
5 evlfval.b . . . . 5 𝐵 = (Base‘𝐶)
6 evlfval.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 evlfval.o . . . . 5 · = (comp‘𝐷)
8 evlfval.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
92, 3, 4, 5, 6, 7, 8evlfval 18274 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
10 ovex 7464 . . . . . 6 (𝐶 Func 𝐷) ∈ V
115fvexi 6921 . . . . . 6 𝐵 ∈ V
1210, 11mpoex 8103 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
1310, 11xpex 7772 . . . . . 6 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1413, 13mpoex 8103 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1512, 14op2ndd 8024 . . . 4 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
169, 15syl 17 . . 3 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
17 fvexd 6922 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) ∈ V)
18 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → 𝑥 = ⟨𝐹, 𝑋⟩)
1918fveq2d 6911 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = (1st ‘⟨𝐹, 𝑋⟩))
20 evlf2.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
21 evlf2.x . . . . . . 7 (𝜑𝑋𝐵)
22 op1stg 8025 . . . . . . 7 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2320, 21, 22syl2anc 584 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2423adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2519, 24eqtrd 2775 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = 𝐹)
26 fvexd 6922 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) ∈ V)
27 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → 𝑦 = ⟨𝐺, 𝑌⟩)
2827fveq2d 6911 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = (1st ‘⟨𝐺, 𝑌⟩))
29 evlf2.g . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
30 evlf2.y . . . . . . . 8 (𝜑𝑌𝐵)
31 op1stg 8025 . . . . . . . 8 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3229, 30, 31syl2anc 584 . . . . . . 7 (𝜑 → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3332ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3428, 33eqtrd 2775 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = 𝐺)
35 simplr 769 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑚 = 𝐹)
36 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑛 = 𝐺)
3735, 36oveq12d 7449 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑚𝑁𝑛) = (𝐹𝑁𝐺))
3818ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑥 = ⟨𝐹, 𝑋⟩)
3938fveq2d 6911 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = (2nd ‘⟨𝐹, 𝑋⟩))
40 op2ndg 8026 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4120, 21, 40syl2anc 584 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4241ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4339, 42eqtrd 2775 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = 𝑋)
4427adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑦 = ⟨𝐺, 𝑌⟩)
4544fveq2d 6911 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = (2nd ‘⟨𝐺, 𝑌⟩))
46 op2ndg 8026 . . . . . . . . . 10 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4729, 30, 46syl2anc 584 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4847ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4945, 48eqtrd 2775 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = 𝑌)
5043, 49oveq12d 7449 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑋𝐻𝑌))
5135fveq2d 6911 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑚) = (1st𝐹))
5251, 43fveq12d 6914 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑥)) = ((1st𝐹)‘𝑋))
5351, 49fveq12d 6914 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑦)) = ((1st𝐹)‘𝑌))
5452, 53opeq12d 4886 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩)
5536fveq2d 6911 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑛) = (1st𝐺))
5655, 49fveq12d 6914 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑛)‘(2nd𝑦)) = ((1st𝐺)‘𝑌))
5754, 56oveq12d 7449 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦))) = (⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌)))
5849fveq2d 6911 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎‘(2nd𝑦)) = (𝑎𝑌))
5935fveq2d 6911 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑚) = (2nd𝐹))
6059, 43, 49oveq123d 7452 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)(2nd𝑚)(2nd𝑦)) = (𝑋(2nd𝐹)𝑌))
6160fveq1d 6909 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔) = ((𝑋(2nd𝐹)𝑌)‘𝑔))
6257, 58, 61oveq123d 7452 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)) = ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔)))
6337, 50, 62mpoeq123dv 7508 . . . . 5 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6426, 34, 63csbied2 3948 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6517, 25, 64csbied2 3948 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6620, 21opelxpd 5728 . . 3 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
6729, 30opelxpd 5728 . . 3 (𝜑 → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
68 ovex 7464 . . . . 5 (𝐹𝑁𝐺) ∈ V
69 ovex 7464 . . . . 5 (𝑋𝐻𝑌) ∈ V
7068, 69mpoex 8103 . . . 4 (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V
7170a1i 11 . . 3 (𝜑 → (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V)
7216, 65, 66, 67, 71ovmpod 7585 . 2 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
731, 72eqtrid 2787 1 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  csb 3908  cop 4637   × cxp 5687  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012  Basecbs 17245  Hom chom 17309  compcco 17310  Catccat 17709   Func cfunc 17905   Nat cnat 17996   evalF cevlf 18266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-evlf 18270
This theorem is referenced by:  evlf2val  18276  evlfcl  18279
  Copyright terms: Public domain W3C validator