MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfval Structured version   Visualization version   GIF version

Theorem curfval 18185
Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curfval.j 𝐽 = (Hom ‘𝐷)
curfval.1 1 = (Id‘𝐶)
curfval.h 𝐻 = (Hom ‘𝐶)
curfval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
curfval (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧, 1   𝑥,𝐴,𝑦   𝐵,𝑔,𝑥,𝑦,𝑧   𝐶,𝑔,𝑥,𝑦,𝑧   𝐷,𝑔,𝑥,𝑦,𝑧   𝑔,𝐻,𝑦,𝑧   𝜑,𝑔,𝑥,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽,𝑥   𝑔,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐸(𝑥)   𝐺(𝑥,𝑦,𝑧,𝑔)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curfval
Dummy variables 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . 2 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 df-curf 18176 . . . 4 curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩)
32a1i 11 . . 3 (𝜑 → curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩))
4 fvexd 6899 . . . 4 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) ∈ V)
5 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → 𝑒 = ⟨𝐶, 𝐷⟩)
65fveq2d 6888 . . . . 5 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) = (1st ‘⟨𝐶, 𝐷⟩))
7 curfval.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
8 curfval.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
9 op1stg 7983 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
107, 8, 9syl2anc 583 . . . . . 6 (𝜑 → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
126, 11eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) = 𝐶)
13 fvexd 6899 . . . . 5 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) ∈ V)
145adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → 𝑒 = ⟨𝐶, 𝐷⟩)
1514fveq2d 6888 . . . . . 6 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) = (2nd ‘⟨𝐶, 𝐷⟩))
16 op2ndg 7984 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
177, 8, 16syl2anc 583 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1817ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1915, 18eqtrd 2766 . . . . 5 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) = 𝐷)
20 simplr 766 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
2120fveq2d 6888 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
22 curfval.a . . . . . . . 8 𝐴 = (Base‘𝐶)
2321, 22eqtr4di 2784 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = 𝐴)
24 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
2524fveq2d 6888 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷))
26 curfval.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
2725, 26eqtr4di 2784 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = 𝐵)
28 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹)
2928ad2antrr 723 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑓 = 𝐹)
3029fveq2d 6888 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (1st𝑓) = (1st𝐹))
3130oveqd 7421 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(1st𝑓)𝑦) = (𝑥(1st𝐹)𝑦))
3227, 31mpteq12dv 5232 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)) = (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)))
3324fveq2d 6888 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷))
34 curfval.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝐷)
3533, 34eqtr4di 2784 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽)
3635oveqd 7421 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦(Hom ‘𝑑)𝑧) = (𝑦𝐽𝑧))
3729fveq2d 6888 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (2nd𝑓) = (2nd𝐹))
3837oveqd 7421 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩))
3920fveq2d 6888 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = (Id‘𝐶))
40 curfval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
4139, 40eqtr4di 2784 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = 1 )
4241fveq1d 6886 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
43 eqidd 2727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑔 = 𝑔)
4438, 42, 43oveq123d 7425 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))
4536, 44mpteq12dv 5232 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))
4627, 27, 45mpoeq123dv 7479 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))))
4732, 46opeq12d 4876 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)
4823, 47mpteq12dv 5232 . . . . . 6 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
4920fveq2d 6888 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = (Hom ‘𝐶))
50 curfval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
5149, 50eqtr4di 2784 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = 𝐻)
5251oveqd 7421 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦))
5337oveqd 7421 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩) = (⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩))
5424fveq2d 6888 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = (Id‘𝐷))
55 curfval.i . . . . . . . . . . . 12 𝐼 = (Id‘𝐷)
5654, 55eqtr4di 2784 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = 𝐼)
5756fveq1d 6886 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑑)‘𝑧) = (𝐼𝑧))
5853, 43, 57oveq123d 7425 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)) = (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))
5927, 58mpteq12dv 5232 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧))) = (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))
6052, 59mpteq12dv 5232 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))) = (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))
6123, 23, 60mpoeq123dv 7479 . . . . . 6 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧))))) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))))
6248, 61opeq12d 4876 . . . . 5 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
6313, 19, 62csbied2 3928 . . . 4 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
644, 12, 63csbied2 3928 . . 3 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
65 opex 5457 . . . 4 𝐶, 𝐷⟩ ∈ V
6665a1i 11 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ V)
67 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6867elexd 3489 . . 3 (𝜑𝐹 ∈ V)
69 opex 5457 . . . 4 ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ ∈ V
7069a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ ∈ V)
713, 64, 66, 68, 70ovmpod 7555 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
721, 71eqtrid 2778 1 (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  csb 3888  cop 4629  cmpt 5224  cfv 6536  (class class class)co 7404  cmpo 7406  1st c1st 7969  2nd c2nd 7970  Basecbs 17150  Hom chom 17214  Catccat 17614  Idccid 17615   Func cfunc 17810   ×c cxpc 18129   curryF ccurf 18172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-curf 18176
This theorem is referenced by:  curf1fval  18186  curf2  18191  curfcl  18194  curfpropd  18195  curfuncf  18200
  Copyright terms: Public domain W3C validator