MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfval Structured version   Visualization version   GIF version

Theorem curfval 17249
Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curfval.j 𝐽 = (Hom ‘𝐷)
curfval.1 1 = (Id‘𝐶)
curfval.h 𝐻 = (Hom ‘𝐶)
curfval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
curfval (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧, 1   𝑥,𝐴,𝑦   𝐵,𝑔,𝑥,𝑦,𝑧   𝐶,𝑔,𝑥,𝑦,𝑧   𝐷,𝑔,𝑥,𝑦,𝑧   𝑔,𝐻,𝑦,𝑧   𝜑,𝑔,𝑥,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽,𝑥   𝑔,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐸(𝑥)   𝐺(𝑥,𝑦,𝑧,𝑔)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curfval
Dummy variables 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . 2 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 df-curf 17240 . . . 4 curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩)
32a1i 11 . . 3 (𝜑 → curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩))
4 fvexd 6461 . . . 4 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) ∈ V)
5 simprl 761 . . . . . 6 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → 𝑒 = ⟨𝐶, 𝐷⟩)
65fveq2d 6450 . . . . 5 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) = (1st ‘⟨𝐶, 𝐷⟩))
7 curfval.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
8 curfval.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
9 op1stg 7457 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
107, 8, 9syl2anc 579 . . . . . 6 (𝜑 → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
1110adantr 474 . . . . 5 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
126, 11eqtrd 2814 . . . 4 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) = 𝐶)
13 fvexd 6461 . . . . 5 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) ∈ V)
145adantr 474 . . . . . . 7 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → 𝑒 = ⟨𝐶, 𝐷⟩)
1514fveq2d 6450 . . . . . 6 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) = (2nd ‘⟨𝐶, 𝐷⟩))
16 op2ndg 7458 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
177, 8, 16syl2anc 579 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1817ad2antrr 716 . . . . . 6 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1915, 18eqtrd 2814 . . . . 5 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) = 𝐷)
20 simplr 759 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
2120fveq2d 6450 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
22 curfval.a . . . . . . . 8 𝐴 = (Base‘𝐶)
2321, 22syl6eqr 2832 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = 𝐴)
24 simpr 479 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
2524fveq2d 6450 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷))
26 curfval.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
2725, 26syl6eqr 2832 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = 𝐵)
28 simprr 763 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹)
2928ad2antrr 716 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑓 = 𝐹)
3029fveq2d 6450 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (1st𝑓) = (1st𝐹))
3130oveqd 6939 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(1st𝑓)𝑦) = (𝑥(1st𝐹)𝑦))
3227, 31mpteq12dv 4969 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)) = (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)))
3324fveq2d 6450 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷))
34 curfval.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝐷)
3533, 34syl6eqr 2832 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽)
3635oveqd 6939 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦(Hom ‘𝑑)𝑧) = (𝑦𝐽𝑧))
3729fveq2d 6450 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (2nd𝑓) = (2nd𝐹))
3837oveqd 6939 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩))
3920fveq2d 6450 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = (Id‘𝐶))
40 curfval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
4139, 40syl6eqr 2832 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = 1 )
4241fveq1d 6448 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
43 eqidd 2779 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑔 = 𝑔)
4438, 42, 43oveq123d 6943 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))
4536, 44mpteq12dv 4969 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))
4627, 27, 45mpt2eq123dv 6994 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))))
4732, 46opeq12d 4644 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)
4823, 47mpteq12dv 4969 . . . . . 6 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
4920fveq2d 6450 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = (Hom ‘𝐶))
50 curfval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
5149, 50syl6eqr 2832 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = 𝐻)
5251oveqd 6939 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦))
5337oveqd 6939 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩) = (⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩))
5424fveq2d 6450 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = (Id‘𝐷))
55 curfval.i . . . . . . . . . . . 12 𝐼 = (Id‘𝐷)
5654, 55syl6eqr 2832 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = 𝐼)
5756fveq1d 6448 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑑)‘𝑧) = (𝐼𝑧))
5853, 43, 57oveq123d 6943 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)) = (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))
5927, 58mpteq12dv 4969 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧))) = (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))
6052, 59mpteq12dv 4969 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))) = (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))
6123, 23, 60mpt2eq123dv 6994 . . . . . 6 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧))))) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))))
6248, 61opeq12d 4644 . . . . 5 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
6313, 19, 62csbied2 3779 . . . 4 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
644, 12, 63csbied2 3779 . . 3 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
65 opex 5164 . . . 4 𝐶, 𝐷⟩ ∈ V
6665a1i 11 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ V)
67 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6867elexd 3416 . . 3 (𝜑𝐹 ∈ V)
69 opex 5164 . . . 4 ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ ∈ V
7069a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ ∈ V)
713, 64, 66, 68, 70ovmpt2d 7065 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
721, 71syl5eq 2826 1 (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  csb 3751  cop 4404  cmpt 4965  cfv 6135  (class class class)co 6922  cmpt2 6924  1st c1st 7443  2nd c2nd 7444  Basecbs 16255  Hom chom 16349  Catccat 16710  Idccid 16711   Func cfunc 16899   ×c cxpc 17194   curryF ccurf 17236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-curf 17240
This theorem is referenced by:  curf1fval  17250  curf2  17255  curfcl  17258  curfpropd  17259  curfuncf  17264
  Copyright terms: Public domain W3C validator