MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfval Structured version   Visualization version   GIF version

Theorem curfval 17857
Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curfval.j 𝐽 = (Hom ‘𝐷)
curfval.1 1 = (Id‘𝐶)
curfval.h 𝐻 = (Hom ‘𝐶)
curfval.i 𝐼 = (Id‘𝐷)
Assertion
Ref Expression
curfval (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧, 1   𝑥,𝐴,𝑦   𝐵,𝑔,𝑥,𝑦,𝑧   𝐶,𝑔,𝑥,𝑦,𝑧   𝐷,𝑔,𝑥,𝑦,𝑧   𝑔,𝐻,𝑦,𝑧   𝜑,𝑔,𝑥,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐽,𝑥   𝑔,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐸(𝑥)   𝐺(𝑥,𝑦,𝑧,𝑔)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)

Proof of Theorem curfval
Dummy variables 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . 2 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 df-curf 17848 . . . 4 curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩)
32a1i 11 . . 3 (𝜑 → curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩))
4 fvexd 6771 . . . 4 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) ∈ V)
5 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → 𝑒 = ⟨𝐶, 𝐷⟩)
65fveq2d 6760 . . . . 5 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) = (1st ‘⟨𝐶, 𝐷⟩))
7 curfval.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
8 curfval.d . . . . . . 7 (𝜑𝐷 ∈ Cat)
9 op1stg 7816 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
107, 8, 9syl2anc 583 . . . . . 6 (𝜑 → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
126, 11eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) = 𝐶)
13 fvexd 6771 . . . . 5 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) ∈ V)
145adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → 𝑒 = ⟨𝐶, 𝐷⟩)
1514fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) = (2nd ‘⟨𝐶, 𝐷⟩))
16 op2ndg 7817 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
177, 8, 16syl2anc 583 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1817ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1915, 18eqtrd 2778 . . . . 5 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) = 𝐷)
20 simplr 765 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
2120fveq2d 6760 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
22 curfval.a . . . . . . . 8 𝐴 = (Base‘𝐶)
2321, 22eqtr4di 2797 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = 𝐴)
24 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
2524fveq2d 6760 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷))
26 curfval.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
2725, 26eqtr4di 2797 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = 𝐵)
28 simprr 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹)
2928ad2antrr 722 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑓 = 𝐹)
3029fveq2d 6760 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (1st𝑓) = (1st𝐹))
3130oveqd 7272 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(1st𝑓)𝑦) = (𝑥(1st𝐹)𝑦))
3227, 31mpteq12dv 5161 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)) = (𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)))
3324fveq2d 6760 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷))
34 curfval.j . . . . . . . . . . . 12 𝐽 = (Hom ‘𝐷)
3533, 34eqtr4di 2797 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽)
3635oveqd 7272 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦(Hom ‘𝑑)𝑧) = (𝑦𝐽𝑧))
3729fveq2d 6760 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (2nd𝑓) = (2nd𝐹))
3837oveqd 7272 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩) = (⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩))
3920fveq2d 6760 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = (Id‘𝐶))
40 curfval.1 . . . . . . . . . . . . 13 1 = (Id‘𝐶)
4139, 40eqtr4di 2797 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = 1 )
4241fveq1d 6758 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
43 eqidd 2739 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑔 = 𝑔)
4438, 42, 43oveq123d 7276 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔) = (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))
4536, 44mpteq12dv 5161 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))
4627, 27, 45mpoeq123dv 7328 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))))
4732, 46opeq12d 4809 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)
4823, 47mpteq12dv 5161 . . . . . 6 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
4920fveq2d 6760 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = (Hom ‘𝐶))
50 curfval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
5149, 50eqtr4di 2797 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = 𝐻)
5251oveqd 7272 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦))
5337oveqd 7272 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩) = (⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩))
5424fveq2d 6760 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = (Id‘𝐷))
55 curfval.i . . . . . . . . . . . 12 𝐼 = (Id‘𝐷)
5654, 55eqtr4di 2797 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = 𝐼)
5756fveq1d 6758 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑑)‘𝑧) = (𝐼𝑧))
5853, 43, 57oveq123d 7276 . . . . . . . . 9 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)) = (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))
5927, 58mpteq12dv 5161 . . . . . . . 8 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧))) = (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))
6052, 59mpteq12dv 5161 . . . . . . 7 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))) = (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))
6123, 23, 60mpoeq123dv 7328 . . . . . 6 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧))))) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))))
6248, 61opeq12d 4809 . . . . 5 ((((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
6313, 19, 62csbied2 3868 . . . 4 (((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
644, 12, 63csbied2 3868 . . 3 ((𝜑 ∧ (𝑒 = ⟨𝐶, 𝐷⟩ ∧ 𝑓 = 𝐹)) → (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩ = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
65 opex 5373 . . . 4 𝐶, 𝐷⟩ ∈ V
6665a1i 11 . . 3 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ V)
67 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6867elexd 3442 . . 3 (𝜑𝐹 ∈ V)
69 opex 5373 . . . 4 ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ ∈ V
7069a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ ∈ V)
713, 64, 66, 68, 70ovmpod 7403 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
721, 71eqtrid 2790 1 (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  cop 4564  cmpt 5153  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  Catccat 17290  Idccid 17291   Func cfunc 17485   ×c cxpc 17801   curryF ccurf 17844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-curf 17848
This theorem is referenced by:  curf1fval  17858  curf2  17863  curfcl  17866  curfpropd  17867  curfuncf  17872
  Copyright terms: Public domain W3C validator