Step | Hyp | Ref
| Expression |
1 | | curfval.g |
. 2
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
2 | | df-curf 17530 |
. . . 4
⊢
curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → curryF =
(𝑒 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉)) |
4 | | fvexd 6673 |
. . . 4
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘𝑒) ∈ V) |
5 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → 𝑒 = 〈𝐶, 𝐷〉) |
6 | 5 | fveq2d 6662 |
. . . . 5
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘𝑒) = (1st
‘〈𝐶, 𝐷〉)) |
7 | | curfval.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | | curfval.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
9 | | op1stg 7705 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) →
(1st ‘〈𝐶, 𝐷〉) = 𝐶) |
10 | 7, 8, 9 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → (1st
‘〈𝐶, 𝐷〉) = 𝐶) |
11 | 10 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
12 | 6, 11 | eqtrd 2793 |
. . . 4
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘𝑒) = 𝐶) |
13 | | fvexd 6673 |
. . . . 5
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘𝑒) ∈ V) |
14 | 5 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → 𝑒 = 〈𝐶, 𝐷〉) |
15 | 14 | fveq2d 6662 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘𝑒) = (2nd
‘〈𝐶, 𝐷〉)) |
16 | | op2ndg 7706 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) →
(2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
17 | 7, 8, 16 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘〈𝐶, 𝐷〉) = 𝐷) |
18 | 17 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
19 | 15, 18 | eqtrd 2793 |
. . . . 5
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘𝑒) = 𝐷) |
20 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶) |
21 | 20 | fveq2d 6662 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶)) |
22 | | curfval.a |
. . . . . . . 8
⊢ 𝐴 = (Base‘𝐶) |
23 | 21, 22 | eqtr4di 2811 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = 𝐴) |
24 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
25 | 24 | fveq2d 6662 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷)) |
26 | | curfval.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐷) |
27 | 25, 26 | eqtr4di 2811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = 𝐵) |
28 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
29 | 28 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑓 = 𝐹) |
30 | 29 | fveq2d 6662 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (1st ‘𝑓) = (1st ‘𝐹)) |
31 | 30 | oveqd 7167 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(1st ‘𝑓)𝑦) = (𝑥(1st ‘𝐹)𝑦)) |
32 | 27, 31 | mpteq12dv 5117 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦))) |
33 | 24 | fveq2d 6662 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷)) |
34 | | curfval.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (Hom ‘𝐷) |
35 | 33, 34 | eqtr4di 2811 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽) |
36 | 35 | oveqd 7167 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦(Hom ‘𝑑)𝑧) = (𝑦𝐽𝑧)) |
37 | 29 | fveq2d 6662 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (2nd ‘𝑓) = (2nd ‘𝐹)) |
38 | 37 | oveqd 7167 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉) = (〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)) |
39 | 20 | fveq2d 6662 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = (Id‘𝐶)) |
40 | | curfval.1 |
. . . . . . . . . . . . 13
⊢ 1 =
(Id‘𝐶) |
41 | 39, 40 | eqtr4di 2811 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = 1 ) |
42 | 41 | fveq1d 6660 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
43 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑔 = 𝑔) |
44 | 38, 42, 43 | oveq123d 7171 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔) = (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)) |
45 | 36, 44 | mpteq12dv 5117 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔))) |
46 | 27, 27, 45 | mpoeq123dv 7223 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))) |
47 | 32, 46 | opeq12d 4771 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉 = 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) |
48 | 23, 47 | mpteq12dv 5117 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
49 | 20 | fveq2d 6662 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = (Hom ‘𝐶)) |
50 | | curfval.h |
. . . . . . . . . 10
⊢ 𝐻 = (Hom ‘𝐶) |
51 | 49, 50 | eqtr4di 2811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = 𝐻) |
52 | 51 | oveqd 7167 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦)) |
53 | 37 | oveqd 7167 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉) = (〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)) |
54 | 24 | fveq2d 6662 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = (Id‘𝐷)) |
55 | | curfval.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (Id‘𝐷) |
56 | 54, 55 | eqtr4di 2811 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = 𝐼) |
57 | 56 | fveq1d 6660 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑑)‘𝑧) = (𝐼‘𝑧)) |
58 | 53, 43, 57 | oveq123d 7171 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)) = (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧))) |
59 | 27, 58 | mpteq12dv 5117 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧))) = (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))) |
60 | 52, 59 | mpteq12dv 5117 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))) = (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧))))) |
61 | 23, 23, 60 | mpoeq123dv 7223 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧))))) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))) |
62 | 48, 61 | opeq12d 4771 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
63 | 13, 19, 62 | csbied2 3842 |
. . . 4
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → ⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
64 | 4, 12, 63 | csbied2 3842 |
. . 3
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → ⦋(1st
‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
65 | | opex 5324 |
. . . 4
⊢
〈𝐶, 𝐷〉 ∈ V |
66 | 65 | a1i 11 |
. . 3
⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ V) |
67 | | curfval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
68 | 67 | elexd 3430 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
69 | | opex 5324 |
. . . 4
⊢
〈(𝑥 ∈
𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉 ∈ V |
70 | 69 | a1i 11 |
. . 3
⊢ (𝜑 → 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉 ∈ V) |
71 | 3, 64, 66, 68, 70 | ovmpod 7297 |
. 2
⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF 𝐹) = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
72 | 1, 71 | syl5eq 2805 |
1
⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |