Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcvalALTV Structured version   Visualization version   GIF version

Theorem rngcvalALTV 48240
Description: Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcvalALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcvalALTV.u (𝜑𝑈𝑉)
rngcvalALTV.b (𝜑𝐵 = (𝑈 ∩ Rng))
rngcvalALTV.h (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
rngcvalALTV.o (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
Assertion
Ref Expression
rngcvalALTV (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem rngcvalALTV
Dummy variables 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcvalALTV.c . 2 𝐶 = (RngCatALTV‘𝑈)
2 df-rngcALTV 48239 . . . 4 RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
32a1i 11 . . 3 (𝜑 → RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩}))
4 vex 3463 . . . . . 6 𝑢 ∈ V
54inex1 5287 . . . . 5 (𝑢 ∩ Rng) ∈ V
65a1i 11 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) ∈ V)
7 ineq1 4188 . . . . . 6 (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
87adantl 481 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
9 rngcvalALTV.b . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Rng))
109adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝐵 = (𝑈 ∩ Rng))
118, 10eqtr4d 2773 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = 𝐵)
12 simpr 484 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1312opeq2d 4856 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
14 eqidd 2736 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥 RngHom 𝑦) = (𝑥 RngHom 𝑦))
1512, 12, 14mpoeq123dv 7482 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
16 rngcvalALTV.h . . . . . . . 8 (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
1815, 17eqtr4d 2773 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦)) = 𝐻)
1918opeq2d 4856 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
2012sqxpeqd 5686 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
21 eqidd 2736 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))
2220, 12, 21mpoeq123dv 7482 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
23 rngcvalALTV.o . . . . . . . 8 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
2423ad2antrr 726 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
2522, 24eqtr4d 2773 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))) = · )
2625opeq2d 4856 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
2713, 19, 26tpeq123d 4724 . . . 4 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
286, 11, 27csbied2 3911 . . 3 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
29 rngcvalALTV.u . . . 4 (𝜑𝑈𝑉)
30 elex 3480 . . . 4 (𝑈𝑉𝑈 ∈ V)
3129, 30syl 17 . . 3 (𝜑𝑈 ∈ V)
32 tpex 7740 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
3332a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
343, 28, 31, 33fvmptd 6993 . 2 (𝜑 → (RngCatALTV‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
351, 34eqtrid 2782 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  cin 3925  {ctp 4605  cop 4607  cmpt 5201   × cxp 5652  ccom 5658  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  ndxcnx 17212  Basecbs 17228  Hom chom 17282  compcco 17283  Rngcrng 20112   RngHom crnghm 20394  RngCatALTVcrngcALTV 48238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-oprab 7409  df-mpo 7410  df-rngcALTV 48239
This theorem is referenced by:  rngcbasALTV  48241  rngchomfvalALTV  48242  rngccofvalALTV  48245
  Copyright terms: Public domain W3C validator