Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcvalALTV Structured version   Visualization version   GIF version

Theorem rngcvalALTV 44572
 Description: Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcvalALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcvalALTV.u (𝜑𝑈𝑉)
rngcvalALTV.b (𝜑𝐵 = (𝑈 ∩ Rng))
rngcvalALTV.h (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))
rngcvalALTV.o (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
Assertion
Ref Expression
rngcvalALTV (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem rngcvalALTV
Dummy variables 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcvalALTV.c . 2 𝐶 = (RngCatALTV‘𝑈)
2 df-rngcALTV 44571 . . . 4 RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
32a1i 11 . . 3 (𝜑 → RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩}))
4 vex 3447 . . . . . 6 𝑢 ∈ V
54inex1 5188 . . . . 5 (𝑢 ∩ Rng) ∈ V
65a1i 11 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) ∈ V)
7 ineq1 4134 . . . . . 6 (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
87adantl 485 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
9 rngcvalALTV.b . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Rng))
109adantr 484 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝐵 = (𝑈 ∩ Rng))
118, 10eqtr4d 2839 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = 𝐵)
12 simpr 488 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1312opeq2d 4775 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
14 eqidd 2802 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥 RngHomo 𝑦) = (𝑥 RngHomo 𝑦))
1512, 12, 14mpoeq123dv 7212 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))
16 rngcvalALTV.h . . . . . . . 8 (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))
1716ad2antrr 725 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))
1815, 17eqtr4d 2839 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦)) = 𝐻)
1918opeq2d 4775 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
2012sqxpeqd 5555 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
21 eqidd 2802 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))
2220, 12, 21mpoeq123dv 7212 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
23 rngcvalALTV.o . . . . . . . 8 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
2423ad2antrr 725 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
2522, 24eqtr4d 2839 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))) = · )
2625opeq2d 4775 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
2713, 19, 26tpeq123d 4647 . . . 4 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
286, 11, 27csbied2 3868 . . 3 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
29 rngcvalALTV.u . . . 4 (𝜑𝑈𝑉)
30 elex 3462 . . . 4 (𝑈𝑉𝑈 ∈ V)
3129, 30syl 17 . . 3 (𝜑𝑈 ∈ V)
32 tpex 7454 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
3332a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
343, 28, 31, 33fvmptd 6756 . 2 (𝜑 → (RngCatALTV‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
351, 34syl5eq 2848 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Vcvv 3444  ⦋csb 3831   ∩ cin 3883  {ctp 4532  ⟨cop 4534   ↦ cmpt 5113   × cxp 5521   ∘ ccom 5527  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  1st c1st 7673  2nd c2nd 7674  ndxcnx 16475  Basecbs 16478  Hom chom 16571  compcco 16572  Rngcrng 44485   RngHomo crngh 44496  RngCatALTVcrngcALTV 44569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6287  df-fun 6330  df-fv 6336  df-oprab 7143  df-mpo 7144  df-rngcALTV 44571 This theorem is referenced by:  rngcbasALTV  44594  rngchomfvalALTV  44595  rngccofvalALTV  44598
 Copyright terms: Public domain W3C validator