Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcvalALTV Structured version   Visualization version   GIF version

Theorem rngcvalALTV 47660
Description: Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcvalALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcvalALTV.u (𝜑𝑈𝑉)
rngcvalALTV.b (𝜑𝐵 = (𝑈 ∩ Rng))
rngcvalALTV.h (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
rngcvalALTV.o (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
Assertion
Ref Expression
rngcvalALTV (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem rngcvalALTV
Dummy variables 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcvalALTV.c . 2 𝐶 = (RngCatALTV‘𝑈)
2 df-rngcALTV 47659 . . . 4 RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
32a1i 11 . . 3 (𝜑 → RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩}))
4 vex 3466 . . . . . 6 𝑢 ∈ V
54inex1 5324 . . . . 5 (𝑢 ∩ Rng) ∈ V
65a1i 11 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) ∈ V)
7 ineq1 4206 . . . . . 6 (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
87adantl 480 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
9 rngcvalALTV.b . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Rng))
109adantr 479 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝐵 = (𝑈 ∩ Rng))
118, 10eqtr4d 2769 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = 𝐵)
12 simpr 483 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1312opeq2d 4888 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
14 eqidd 2727 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥 RngHom 𝑦) = (𝑥 RngHom 𝑦))
1512, 12, 14mpoeq123dv 7502 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
16 rngcvalALTV.h . . . . . . . 8 (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
1716ad2antrr 724 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
1815, 17eqtr4d 2769 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦)) = 𝐻)
1918opeq2d 4888 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
2012sqxpeqd 5716 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
21 eqidd 2727 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))
2220, 12, 21mpoeq123dv 7502 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
23 rngcvalALTV.o . . . . . . . 8 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
2423ad2antrr 724 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
2522, 24eqtr4d 2769 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))) = · )
2625opeq2d 4888 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
2713, 19, 26tpeq123d 4757 . . . 4 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
286, 11, 27csbied2 3932 . . 3 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
29 rngcvalALTV.u . . . 4 (𝜑𝑈𝑉)
30 elex 3482 . . . 4 (𝑈𝑉𝑈 ∈ V)
3129, 30syl 17 . . 3 (𝜑𝑈 ∈ V)
32 tpex 7757 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
3332a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
343, 28, 31, 33fvmptd 7018 . 2 (𝜑 → (RngCatALTV‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
351, 34eqtrid 2778 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  csb 3892  cin 3946  {ctp 4637  cop 4639  cmpt 5238   × cxp 5682  ccom 5688  cfv 6556  (class class class)co 7426  cmpo 7428  1st c1st 8003  2nd c2nd 8004  ndxcnx 17197  Basecbs 17215  Hom chom 17279  compcco 17280  Rngcrng 20137   RngHom crnghm 20418  RngCatALTVcrngcALTV 47658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6508  df-fun 6558  df-fv 6564  df-oprab 7430  df-mpo 7431  df-rngcALTV 47659
This theorem is referenced by:  rngcbasALTV  47661  rngchomfvalALTV  47662  rngccofvalALTV  47665
  Copyright terms: Public domain W3C validator