Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcvalALTV Structured version   Visualization version   GIF version

Theorem rngcvalALTV 48364
Description: Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcvalALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcvalALTV.u (𝜑𝑈𝑉)
rngcvalALTV.b (𝜑𝐵 = (𝑈 ∩ Rng))
rngcvalALTV.h (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
rngcvalALTV.o (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
Assertion
Ref Expression
rngcvalALTV (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem rngcvalALTV
Dummy variables 𝑏 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcvalALTV.c . 2 𝐶 = (RngCatALTV‘𝑈)
2 df-rngcALTV 48363 . . . 4 RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
32a1i 11 . . 3 (𝜑 → RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩}))
4 vex 3440 . . . . . 6 𝑢 ∈ V
54inex1 5253 . . . . 5 (𝑢 ∩ Rng) ∈ V
65a1i 11 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) ∈ V)
7 ineq1 4160 . . . . . 6 (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
87adantl 481 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = (𝑈 ∩ Rng))
9 rngcvalALTV.b . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Rng))
109adantr 480 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝐵 = (𝑈 ∩ Rng))
118, 10eqtr4d 2769 . . . 4 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) = 𝐵)
12 simpr 484 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
1312opeq2d 4829 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
14 eqidd 2732 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥 RngHom 𝑦) = (𝑥 RngHom 𝑦))
1512, 12, 14mpoeq123dv 7421 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
16 rngcvalALTV.h . . . . . . . 8 (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHom 𝑦)))
1815, 17eqtr4d 2769 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦)) = 𝐻)
1918opeq2d 4829 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
2012sqxpeqd 5646 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
21 eqidd 2732 . . . . . . . 8 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))
2220, 12, 21mpoeq123dv 7421 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
23 rngcvalALTV.o . . . . . . . 8 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
2423ad2antrr 726 . . . . . . 7 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))))
2522, 24eqtr4d 2769 . . . . . 6 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓))) = · )
2625opeq2d 4829 . . . . 5 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
2713, 19, 26tpeq123d 4698 . . . 4 (((𝜑𝑢 = 𝑈) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
286, 11, 27csbied2 3882 . . 3 ((𝜑𝑢 = 𝑈) → (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
29 rngcvalALTV.u . . . 4 (𝜑𝑈𝑉)
30 elex 3457 . . . 4 (𝑈𝑉𝑈 ∈ V)
3129, 30syl 17 . . 3 (𝜑𝑈 ∈ V)
32 tpex 7679 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
3332a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
343, 28, 31, 33fvmptd 6936 . 2 (𝜑 → (RngCatALTV‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
351, 34eqtrid 2778 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  csb 3845  cin 3896  {ctp 4577  cop 4579  cmpt 5170   × cxp 5612  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  ndxcnx 17104  Basecbs 17120  Hom chom 17172  compcco 17173  Rngcrng 20070   RngHom crnghm 20352  RngCatALTVcrngcALTV 48362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-oprab 7350  df-mpo 7351  df-rngcALTV 48363
This theorem is referenced by:  rngcbasALTV  48365  rngchomfvalALTV  48366  rngccofvalALTV  48369
  Copyright terms: Public domain W3C validator