Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringcvalALTV Structured version   Visualization version   GIF version

Theorem ringcvalALTV 46206
Description: Value of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcvalALTV.c 𝐢 = (RingCatALTVβ€˜π‘ˆ)
ringcvalALTV.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
ringcvalALTV.b (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Ring))
ringcvalALTV.h (πœ‘ β†’ 𝐻 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ RingHom 𝑦)))
ringcvalALTV.o (πœ‘ β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
Assertion
Ref Expression
ringcvalALTV (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,π‘₯,𝑦,𝑧   𝑣,𝐡,π‘₯,𝑦,𝑧   𝑣,π‘ˆ,π‘₯,𝑦,𝑧   πœ‘,𝑣,π‘₯,𝑦,𝑧
Allowed substitution hints:   πœ‘(𝑓,𝑔)   𝐡(𝑓,𝑔)   𝐢(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   Β· (π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   π‘ˆ(𝑓,𝑔)   𝐻(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem ringcvalALTV
Dummy variables 𝑏 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcvalALTV.c . 2 𝐢 = (RingCatALTVβ€˜π‘ˆ)
2 df-ringcALTV 46205 . . . 4 RingCatALTV = (𝑒 ∈ V ↦ ⦋(𝑒 ∩ Ring) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩})
32a1i 11 . . 3 (πœ‘ β†’ RingCatALTV = (𝑒 ∈ V ↦ ⦋(𝑒 ∩ Ring) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩}))
4 vex 3447 . . . . . 6 𝑒 ∈ V
54inex1 5272 . . . . 5 (𝑒 ∩ Ring) ∈ V
65a1i 11 . . . 4 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑒 ∩ Ring) ∈ V)
7 ineq1 4163 . . . . . 6 (𝑒 = π‘ˆ β†’ (𝑒 ∩ Ring) = (π‘ˆ ∩ Ring))
87adantl 482 . . . . 5 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑒 ∩ Ring) = (π‘ˆ ∩ Ring))
9 ringcvalALTV.b . . . . . 6 (πœ‘ β†’ 𝐡 = (π‘ˆ ∩ Ring))
109adantr 481 . . . . 5 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ 𝐡 = (π‘ˆ ∩ Ring))
118, 10eqtr4d 2780 . . . 4 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑒 ∩ Ring) = 𝐡)
12 simpr 485 . . . . . 6 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ 𝑏 = 𝐡)
1312opeq2d 4835 . . . . 5 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ ⟨(Baseβ€˜ndx), π‘βŸ© = ⟨(Baseβ€˜ndx), 𝐡⟩)
14 eqidd 2738 . . . . . . . 8 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (π‘₯ RingHom 𝑦) = (π‘₯ RingHom 𝑦))
1512, 12, 14mpoeq123dv 7426 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ RingHom 𝑦)))
16 ringcvalALTV.h . . . . . . . 8 (πœ‘ β†’ 𝐻 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ RingHom 𝑦)))
1716ad2antrr 724 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ 𝐻 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ RingHom 𝑦)))
1815, 17eqtr4d 2780 . . . . . 6 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦)) = 𝐻)
1918opeq2d 4835 . . . . 5 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦))⟩ = ⟨(Hom β€˜ndx), 𝐻⟩)
2012sqxpeqd 5663 . . . . . . . 8 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑏 Γ— 𝑏) = (𝐡 Γ— 𝐡))
21 eqidd 2738 . . . . . . . 8 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))
2220, 12, 21mpoeq123dv 7426 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
23 ringcvalALTV.o . . . . . . . 8 (πœ‘ β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
2423ad2antrr 724 . . . . . . 7 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
2522, 24eqtr4d 2780 . . . . . 6 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))) = Β· )
2625opeq2d 4835 . . . . 5 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩ = ⟨(compβ€˜ndx), Β· ⟩)
2713, 19, 26tpeq123d 4707 . . . 4 (((πœ‘ ∧ 𝑒 = π‘ˆ) ∧ 𝑏 = 𝐡) β†’ {⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
286, 11, 27csbied2 3893 . . 3 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ ⦋(𝑒 ∩ Ring) / π‘β¦Œ{⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ RingHom 𝑦))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑏 Γ— 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
29 ringcvalALTV.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
30 elex 3461 . . . 4 (π‘ˆ ∈ 𝑉 β†’ π‘ˆ ∈ V)
3129, 30syl 17 . . 3 (πœ‘ β†’ π‘ˆ ∈ V)
32 tpex 7673 . . . 4 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩} ∈ V
3332a1i 11 . . 3 (πœ‘ β†’ {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩} ∈ V)
343, 28, 31, 33fvmptd 6952 . 2 (πœ‘ β†’ (RingCatALTVβ€˜π‘ˆ) = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
351, 34eqtrid 2789 1 (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3443  β¦‹csb 3853   ∩ cin 3907  {ctp 4588  βŸ¨cop 4590   ↦ cmpt 5186   Γ— cxp 5629   ∘ ccom 5635  β€˜cfv 6493  (class class class)co 7351   ∈ cmpo 7353  1st c1st 7911  2nd c2nd 7912  ndxcnx 17025  Basecbs 17043  Hom chom 17104  compcco 17105  Ringcrg 19918   RingHom crh 20096  RingCatALTVcringcALTV 46203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6445  df-fun 6495  df-fv 6501  df-oprab 7355  df-mpo 7356  df-ringcALTV 46205
This theorem is referenced by:  ringcbasALTV  46245  ringchomfvalALTV  46246  ringccofvalALTV  46249
  Copyright terms: Public domain W3C validator