Step | Hyp | Ref
| Expression |
1 | | ringcvalALTV.c |
. 2
β’ πΆ = (RingCatALTVβπ) |
2 | | df-ringcALTV 46205 |
. . . 4
β’
RingCatALTV = (π’
β V β¦ β¦(π’ β© Ring) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))β©}) |
3 | 2 | a1i 11 |
. . 3
β’ (π β RingCatALTV = (π’ β V β¦
β¦(π’ β©
Ring) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))β©})) |
4 | | vex 3447 |
. . . . . 6
β’ π’ β V |
5 | 4 | inex1 5272 |
. . . . 5
β’ (π’ β© Ring) β
V |
6 | 5 | a1i 11 |
. . . 4
β’ ((π β§ π’ = π) β (π’ β© Ring) β V) |
7 | | ineq1 4163 |
. . . . . 6
β’ (π’ = π β (π’ β© Ring) = (π β© Ring)) |
8 | 7 | adantl 482 |
. . . . 5
β’ ((π β§ π’ = π) β (π’ β© Ring) = (π β© Ring)) |
9 | | ringcvalALTV.b |
. . . . . 6
β’ (π β π΅ = (π β© Ring)) |
10 | 9 | adantr 481 |
. . . . 5
β’ ((π β§ π’ = π) β π΅ = (π β© Ring)) |
11 | 8, 10 | eqtr4d 2780 |
. . . 4
β’ ((π β§ π’ = π) β (π’ β© Ring) = π΅) |
12 | | simpr 485 |
. . . . . 6
β’ (((π β§ π’ = π) β§ π = π΅) β π = π΅) |
13 | 12 | opeq2d 4835 |
. . . . 5
β’ (((π β§ π’ = π) β§ π = π΅) β β¨(Baseβndx), πβ© = β¨(Baseβndx),
π΅β©) |
14 | | eqidd 2738 |
. . . . . . . 8
β’ (((π β§ π’ = π) β§ π = π΅) β (π₯ RingHom π¦) = (π₯ RingHom π¦)) |
15 | 12, 12, 14 | mpoeq123dv 7426 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β (π₯ β π, π¦ β π β¦ (π₯ RingHom π¦)) = (π₯ β π΅, π¦ β π΅ β¦ (π₯ RingHom π¦))) |
16 | | ringcvalALTV.h |
. . . . . . . 8
β’ (π β π» = (π₯ β π΅, π¦ β π΅ β¦ (π₯ RingHom π¦))) |
17 | 16 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β π» = (π₯ β π΅, π¦ β π΅ β¦ (π₯ RingHom π¦))) |
18 | 15, 17 | eqtr4d 2780 |
. . . . . 6
β’ (((π β§ π’ = π) β§ π = π΅) β (π₯ β π, π¦ β π β¦ (π₯ RingHom π¦)) = π») |
19 | 18 | opeq2d 4835 |
. . . . 5
β’ (((π β§ π’ = π) β§ π = π΅) β β¨(Hom βndx), (π₯ β π, π¦ β π β¦ (π₯ RingHom π¦))β© = β¨(Hom βndx), π»β©) |
20 | 12 | sqxpeqd 5663 |
. . . . . . . 8
β’ (((π β§ π’ = π) β§ π = π΅) β (π Γ π) = (π΅ Γ π΅)) |
21 | | eqidd 2738 |
. . . . . . . 8
β’ (((π β§ π’ = π) β§ π = π΅) β (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)) = (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π))) |
22 | 20, 12, 21 | mpoeq123dv 7426 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π))) = (π£ β (π΅ Γ π΅), π§ β π΅ β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))) |
23 | | ringcvalALTV.o |
. . . . . . . 8
β’ (π β Β· = (π£ β (π΅ Γ π΅), π§ β π΅ β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))) |
24 | 23 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π’ = π) β§ π = π΅) β Β· = (π£ β (π΅ Γ π΅), π§ β π΅ β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))) |
25 | 22, 24 | eqtr4d 2780 |
. . . . . 6
β’ (((π β§ π’ = π) β§ π = π΅) β (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π))) = Β· ) |
26 | 25 | opeq2d 4835 |
. . . . 5
β’ (((π β§ π’ = π) β§ π = π΅) β β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))β© = β¨(compβndx), Β·
β©) |
27 | 13, 19, 26 | tpeq123d 4707 |
. . . 4
β’ (((π β§ π’ = π) β§ π = π΅) β {β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))β©} = {β¨(Baseβndx), π΅β©, β¨(Hom βndx),
π»β©,
β¨(compβndx), Β·
β©}) |
28 | 6, 11, 27 | csbied2 3893 |
. . 3
β’ ((π β§ π’ = π) β β¦(π’ β© Ring) / πβ¦{β¨(Baseβndx), πβ©, β¨(Hom βndx),
(π₯ β π, π¦ β π β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β (π Γ π), π§ β π β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd
βπ£)) β¦ (π β π)))β©} = {β¨(Baseβndx), π΅β©, β¨(Hom βndx),
π»β©,
β¨(compβndx), Β·
β©}) |
29 | | ringcvalALTV.u |
. . . 4
β’ (π β π β π) |
30 | | elex 3461 |
. . . 4
β’ (π β π β π β V) |
31 | 29, 30 | syl 17 |
. . 3
β’ (π β π β V) |
32 | | tpex 7673 |
. . . 4
β’
{β¨(Baseβndx), π΅β©, β¨(Hom βndx), π»β©, β¨(compβndx),
Β·
β©} β V |
33 | 32 | a1i 11 |
. . 3
β’ (π β {β¨(Baseβndx),
π΅β©, β¨(Hom
βndx), π»β©,
β¨(compβndx), Β· β©} β
V) |
34 | 3, 28, 31, 33 | fvmptd 6952 |
. 2
β’ (π β (RingCatALTVβπ) = {β¨(Baseβndx),
π΅β©, β¨(Hom
βndx), π»β©,
β¨(compβndx), Β·
β©}) |
35 | 1, 34 | eqtrid 2789 |
1
β’ (π β πΆ = {β¨(Baseβndx), π΅β©, β¨(Hom βndx),
π»β©,
β¨(compβndx), Β·
β©}) |