![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvmdi | Structured version Visualization version GIF version |
Description: The covering property implies the modular pair property. Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 16-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdsl.1 | ⊢ 𝐴 ∈ Cℋ |
mdsl.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cvmdi | ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . . . . . 6 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) | |
2 | mdsl.2 | . . . . . . . . . 10 ⊢ 𝐵 ∈ Cℋ | |
3 | mdsl.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ Cℋ | |
4 | 2, 3 | chub2i 31217 | . . . . . . . . 9 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
5 | sstr 3983 | . . . . . . . . 9 ⊢ ((𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵)) → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) | |
6 | 4, 5 | mpan2 688 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 → 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) |
7 | 6 | pm4.71ri 560 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐵 ↔ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵)) |
8 | 7 | anbi2i 622 | . . . . . 6 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝑥 ⊆ 𝐵))) |
9 | 1, 8 | bitr4i 278 | . . . . 5 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
10 | 3, 2 | chincli 31207 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
11 | cvnbtwn4 32036 | . . . . . . . 8 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → (𝑥 = (𝐴 ∩ 𝐵) ∨ 𝑥 = 𝐵)))) | |
12 | 10, 2, 11 | mp3an12 1447 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → (𝑥 = (𝐴 ∩ 𝐵) ∨ 𝑥 = 𝐵)))) |
13 | 12 | impcom 407 | . . . . . 6 ⊢ (((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ∧ 𝑥 ∈ Cℋ ) → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → (𝑥 = (𝐴 ∩ 𝐵) ∨ 𝑥 = 𝐵))) |
14 | 10, 3 | chjcomi 31215 | . . . . . . . . . . 11 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴) = (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) |
15 | 3, 2 | chabs1i 31265 | . . . . . . . . . . 11 ⊢ (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) = 𝐴 |
16 | 14, 15 | eqtri 2752 | . . . . . . . . . 10 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ 𝐴) = 𝐴 |
17 | 16 | ineq1i 4201 | . . . . . . . . 9 ⊢ (((𝐴 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) = (𝐴 ∩ 𝐵) |
18 | 10 | chjidmi 31268 | . . . . . . . . 9 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)) = (𝐴 ∩ 𝐵) |
19 | 17, 18 | eqtr4i 2755 | . . . . . . . 8 ⊢ (((𝐴 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)) |
20 | oveq1 7409 | . . . . . . . . 9 ⊢ (𝑥 = (𝐴 ∩ 𝐵) → (𝑥 ∨ℋ 𝐴) = ((𝐴 ∩ 𝐵) ∨ℋ 𝐴)) | |
21 | 20 | ineq1d 4204 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 ∩ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (((𝐴 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵)) |
22 | oveq1 7409 | . . . . . . . 8 ⊢ (𝑥 = (𝐴 ∩ 𝐵) → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵))) | |
23 | 19, 21, 22 | 3eqtr4a 2790 | . . . . . . 7 ⊢ (𝑥 = (𝐴 ∩ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) |
24 | incom 4194 | . . . . . . . . 9 ⊢ ((𝐵 ∨ℋ 𝐴) ∩ 𝐵) = (𝐵 ∩ (𝐵 ∨ℋ 𝐴)) | |
25 | 2, 3 | chabs2i 31266 | . . . . . . . . . 10 ⊢ (𝐵 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐵 |
26 | 2, 3 | chabs1i 31265 | . . . . . . . . . 10 ⊢ (𝐵 ∨ℋ (𝐵 ∩ 𝐴)) = 𝐵 |
27 | incom 4194 | . . . . . . . . . . 11 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
28 | 27 | oveq2i 7413 | . . . . . . . . . 10 ⊢ (𝐵 ∨ℋ (𝐵 ∩ 𝐴)) = (𝐵 ∨ℋ (𝐴 ∩ 𝐵)) |
29 | 25, 26, 28 | 3eqtr2i 2758 | . . . . . . . . 9 ⊢ (𝐵 ∩ (𝐵 ∨ℋ 𝐴)) = (𝐵 ∨ℋ (𝐴 ∩ 𝐵)) |
30 | 24, 29 | eqtri 2752 | . . . . . . . 8 ⊢ ((𝐵 ∨ℋ 𝐴) ∩ 𝐵) = (𝐵 ∨ℋ (𝐴 ∩ 𝐵)) |
31 | oveq1 7409 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 ∨ℋ 𝐴) = (𝐵 ∨ℋ 𝐴)) | |
32 | 31 | ineq1d 4204 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = ((𝐵 ∨ℋ 𝐴) ∩ 𝐵)) |
33 | oveq1 7409 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∨ℋ (𝐴 ∩ 𝐵)) = (𝐵 ∨ℋ (𝐴 ∩ 𝐵))) | |
34 | 30, 32, 33 | 3eqtr4a 2790 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) |
35 | 23, 34 | jaoi 854 | . . . . . 6 ⊢ ((𝑥 = (𝐴 ∩ 𝐵) ∨ 𝑥 = 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) |
36 | 13, 35 | syl6 35 | . . . . 5 ⊢ (((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ∧ 𝑥 ∈ Cℋ ) → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
37 | 9, 36 | biimtrid 241 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ∧ 𝑥 ∈ Cℋ ) → ((((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
38 | 37 | exp4b 430 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))))) |
39 | 38 | ralrimiv 3137 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
40 | 3, 2 | mdsl1i 32068 | . 2 ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) |
41 | 39, 40 | sylib 217 | 1 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∩ cin 3940 ⊆ wss 3941 class class class wbr 5139 (class class class)co 7402 Cℋ cch 30676 ∨ℋ chj 30680 ⋖ℋ ccv 30711 𝑀ℋ cmd 30713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cc 10427 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 ax-hilex 30746 ax-hfvadd 30747 ax-hvcom 30748 ax-hvass 30749 ax-hv0cl 30750 ax-hvaddid 30751 ax-hfvmul 30752 ax-hvmulid 30753 ax-hvmulass 30754 ax-hvdistr1 30755 ax-hvdistr2 30756 ax-hvmul0 30757 ax-hfi 30826 ax-his1 30829 ax-his2 30830 ax-his3 30831 ax-his4 30832 ax-hcompl 30949 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-acn 9934 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12976 df-xneg 13093 df-xadd 13094 df-xmul 13095 df-ioo 13329 df-ico 13331 df-icc 13332 df-fz 13486 df-fzo 13629 df-fl 13758 df-seq 13968 df-exp 14029 df-hash 14292 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-clim 15434 df-rlim 15435 df-sum 15635 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-submnd 18710 df-mulg 18992 df-cntz 19229 df-cmn 19698 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-fbas 21231 df-fg 21232 df-cnfld 21235 df-top 22740 df-topon 22757 df-topsp 22779 df-bases 22793 df-cld 22867 df-ntr 22868 df-cls 22869 df-nei 22946 df-cn 23075 df-cnp 23076 df-lm 23077 df-haus 23163 df-tx 23410 df-hmeo 23603 df-fil 23694 df-fm 23786 df-flim 23787 df-flf 23788 df-xms 24170 df-ms 24171 df-tms 24172 df-cfil 25127 df-cau 25128 df-cmet 25129 df-grpo 30240 df-gid 30241 df-ginv 30242 df-gdiv 30243 df-ablo 30292 df-vc 30306 df-nv 30339 df-va 30342 df-ba 30343 df-sm 30344 df-0v 30345 df-vs 30346 df-nmcv 30347 df-ims 30348 df-dip 30448 df-ssp 30469 df-ph 30560 df-cbn 30610 df-hnorm 30715 df-hba 30716 df-hvsub 30718 df-hlim 30719 df-hcau 30720 df-sh 30954 df-ch 30968 df-oc 30999 df-ch0 31000 df-shs 31055 df-chj 31057 df-cv 32026 df-md 32027 |
This theorem is referenced by: cvmd 32083 |
Copyright terms: Public domain | W3C validator |