Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cyggrp | Structured version Visualization version GIF version |
Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cyggrp | ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | iscyg 19479 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (Base‘𝐺))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ℤcz 12319 Basecbs 16912 Grpcgrp 18577 .gcmg 18700 CycGrpccyg 19477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 df-ov 7278 df-cyg 19478 |
This theorem is referenced by: fincygsubgodexd 19716 cygznlem1 20774 cygznlem2a 20775 cygznlem3 20777 prmsimpcyc 31481 |
Copyright terms: Public domain | W3C validator |