MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggrp Structured version   Visualization version   GIF version

Theorem cyggrp 19804
Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
cyggrp (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)

Proof of Theorem cyggrp
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2729 . . 3 (.g𝐺) = (.g𝐺)
31, 2iscyg 19793 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (Base‘𝐺)))
43simplbi 497 1 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  cz 12505  Basecbs 17155  Grpcgrp 18847  .gcmg 18981  CycGrpccyg 19791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-cnv 5639  df-dm 5641  df-rn 5642  df-iota 6452  df-fv 6507  df-ov 7372  df-cyg 19792
This theorem is referenced by:  fincygsubgodexd  20029  cygznlem1  21508  cygznlem2a  21509  cygznlem3  21511  prmsimpcyc  33197
  Copyright terms: Public domain W3C validator