MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggrp Structured version   Visualization version   GIF version

Theorem cyggrp 19593
Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
cyggrp (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)

Proof of Theorem cyggrp
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2737 . . 3 (.g𝐺) = (.g𝐺)
31, 2iscyg 19582 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (Base‘𝐺)))
43simplbi 499 1 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wrex 3071  cmpt 5186  ran crn 5631  cfv 6491  (class class class)co 7349  cz 12432  Basecbs 17017  Grpcgrp 18681  .gcmg 18804  CycGrpccyg 19580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-cnv 5638  df-dm 5640  df-rn 5641  df-iota 6443  df-fv 6499  df-ov 7352  df-cyg 19581
This theorem is referenced by:  fincygsubgodexd  19818  cygznlem1  20887  cygznlem2a  20888  cygznlem3  20890  prmsimpcyc  31835
  Copyright terms: Public domain W3C validator