| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cyggrp | Structured version Visualization version GIF version | ||
| Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cyggrp | ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 3 | 1, 2 | iscyg 19791 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (Base‘𝐺))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ↦ cmpt 5170 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ℤcz 12468 Basecbs 17120 Grpcgrp 18846 .gcmg 18980 CycGrpccyg 19789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6437 df-fv 6489 df-ov 7349 df-cyg 19790 |
| This theorem is referenced by: fincygsubgodexd 20027 cygznlem1 21503 cygznlem2a 21504 cygznlem3 21506 prmsimpcyc 33197 |
| Copyright terms: Public domain | W3C validator |