![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggrp | Structured version Visualization version GIF version |
Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cyggrp | ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | iscyg 19554 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (Base‘𝐺))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃wrex 3071 ↦ cmpt 5170 ran crn 5609 ‘cfv 6466 (class class class)co 7317 ℤcz 12399 Basecbs 16989 Grpcgrp 18653 .gcmg 18776 CycGrpccyg 19552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-cnv 5616 df-dm 5618 df-rn 5619 df-iota 6418 df-fv 6474 df-ov 7320 df-cyg 19553 |
This theorem is referenced by: fincygsubgodexd 19791 cygznlem1 20857 cygznlem2a 20858 cygznlem3 20860 prmsimpcyc 31616 |
Copyright terms: Public domain | W3C validator |