Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cyggrp | Structured version Visualization version GIF version |
Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cyggrp | ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | iscyg 19582 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (Base‘𝐺))) |
4 | 3 | simplbi 499 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 ↦ cmpt 5186 ran crn 5631 ‘cfv 6491 (class class class)co 7349 ℤcz 12432 Basecbs 17017 Grpcgrp 18681 .gcmg 18804 CycGrpccyg 19580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-mpt 5187 df-cnv 5638 df-dm 5640 df-rn 5641 df-iota 6443 df-fv 6499 df-ov 7352 df-cyg 19581 |
This theorem is referenced by: fincygsubgodexd 19818 cygznlem1 20887 cygznlem2a 20888 cygznlem3 20890 prmsimpcyc 31835 |
Copyright terms: Public domain | W3C validator |