![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggrp | Structured version Visualization version GIF version |
Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cyggrp | ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | iscyg 19921 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (Base‘𝐺))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℤcz 12639 Basecbs 17258 Grpcgrp 18973 .gcmg 19107 CycGrpccyg 19919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-cnv 5708 df-dm 5710 df-rn 5711 df-iota 6525 df-fv 6581 df-ov 7451 df-cyg 19920 |
This theorem is referenced by: fincygsubgodexd 20157 cygznlem1 21608 cygznlem2a 21609 cygznlem3 21611 prmsimpcyc 33207 |
Copyright terms: Public domain | W3C validator |