![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cycsubmcmn | Structured version Visualization version GIF version |
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.) |
Ref | Expression |
---|---|
cycsubmcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
cycsubmcmn.t | ⊢ · = (.g‘𝐺) |
cycsubmcmn.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
cycsubmcmn.c | ⊢ 𝐶 = ran 𝐹 |
Ref | Expression |
---|---|
cycsubmcmn | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubmcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cycsubmcmn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
3 | cycsubmcmn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
4 | cycsubmcmn.c | . . . 4 ⊢ 𝐶 = ran 𝐹 | |
5 | 1, 2, 3, 4 | cycsubm 18995 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ (SubMnd‘𝐺)) |
6 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
7 | eqid 2736 | . . . . . 6 ⊢ (𝐺 ↾s 𝐶) = (𝐺 ↾s 𝐶) | |
8 | 1, 6, 7 | issubm2 18615 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd))) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd))) |
10 | simp3 1138 | . . . 4 ⊢ ((𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd) → (𝐺 ↾s 𝐶) ∈ Mnd) | |
11 | 9, 10 | syl6bi 252 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐶 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝐶) ∈ Mnd)) |
12 | 5, 11 | mpd 15 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ Mnd) |
13 | 7 | submbas 18625 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → 𝐶 = (Base‘(𝐺 ↾s 𝐶))) |
14 | 5, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 = (Base‘(𝐺 ↾s 𝐶))) |
15 | 14 | eqcomd 2742 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (Base‘(𝐺 ↾s 𝐶)) = 𝐶) |
16 | 15 | eleq2d 2823 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ↔ 𝑥 ∈ 𝐶)) |
17 | 15 | eleq2d 2823 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝑦 ∈ (Base‘(𝐺 ↾s 𝐶)) ↔ 𝑦 ∈ 𝐶)) |
18 | 16, 17 | anbi12d 631 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶))) |
19 | eqid 2736 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
20 | 1, 2, 3, 4, 19 | cycsubmcom 18997 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
21 | 5 | adantr 481 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐶 ∈ (SubMnd‘𝐺)) |
22 | 7, 19 | ressplusg 17171 | . . . . . . . . . 10 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐶))) |
23 | 22 | eqcomd 2742 | . . . . . . . . 9 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (+g‘(𝐺 ↾s 𝐶)) = (+g‘𝐺)) |
24 | 23 | oveqd 7374 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
25 | 23 | oveqd 7374 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) = (𝑦(+g‘𝐺)𝑥)) |
26 | 24, 25 | eqeq12d 2752 | . . . . . . 7 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
27 | 21, 26 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
28 | 20, 27 | mpbird 256 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥)) |
29 | 28 | ex 413 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
30 | 18, 29 | sylbid 239 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
31 | 30 | ralrimivv 3195 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝐶))∀𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))(𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥)) |
32 | eqid 2736 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝐶)) = (Base‘(𝐺 ↾s 𝐶)) | |
33 | eqid 2736 | . . 3 ⊢ (+g‘(𝐺 ↾s 𝐶)) = (+g‘(𝐺 ↾s 𝐶)) | |
34 | 32, 33 | iscmn 19571 | . 2 ⊢ ((𝐺 ↾s 𝐶) ∈ CMnd ↔ ((𝐺 ↾s 𝐶) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝐶))∀𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))(𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
35 | 12, 31, 34 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3910 ↦ cmpt 5188 ran crn 5634 ‘cfv 6496 (class class class)co 7357 ℕ0cn0 12413 Basecbs 17083 ↾s cress 17112 +gcplusg 17133 0gc0g 17321 Mndcmnd 18556 SubMndcsubmnd 18600 .gcmg 18872 CMndccmn 19562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-seq 13907 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cmn 19564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |