MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcmn Structured version   Visualization version   GIF version

Theorem cycsubmcmn 19004
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcmn.b 𝐵 = (Base‘𝐺)
cycsubmcmn.t · = (.g𝐺)
cycsubmcmn.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcmn.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmcmn ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥, ·
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubmcmn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cycsubmcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cycsubmcmn.t . . . 4 · = (.g𝐺)
3 cycsubmcmn.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcmn.c . . . 4 𝐶 = ran 𝐹
51, 2, 3, 4cycsubm 18341 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
6 eqid 2820 . . . . . 6 (0g𝐺) = (0g𝐺)
7 eqid 2820 . . . . . 6 (𝐺s 𝐶) = (𝐺s 𝐶)
81, 6, 7issubm2 17965 . . . . 5 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
98adantr 483 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
10 simp3 1133 . . . 4 ((𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd) → (𝐺s 𝐶) ∈ Mnd)
119, 10syl6bi 255 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) → (𝐺s 𝐶) ∈ Mnd))
125, 11mpd 15 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ Mnd)
137submbas 17975 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → 𝐶 = (Base‘(𝐺s 𝐶)))
145, 13syl 17 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 = (Base‘(𝐺s 𝐶)))
1514eqcomd 2826 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (Base‘(𝐺s 𝐶)) = 𝐶)
1615eleq2d 2897 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑥 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑥𝐶))
1715eleq2d 2897 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑦 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑦𝐶))
1816, 17anbi12d 632 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) ↔ (𝑥𝐶𝑦𝐶)))
19 eqid 2820 . . . . . . 7 (+g𝐺) = (+g𝐺)
201, 2, 3, 4, 19cycsubmcom 18343 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
215adantr 483 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → 𝐶 ∈ (SubMnd‘𝐺))
227, 19ressplusg 16608 . . . . . . . . . 10 (𝐶 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g‘(𝐺s 𝐶)))
2322eqcomd 2826 . . . . . . . . 9 (𝐶 ∈ (SubMnd‘𝐺) → (+g‘(𝐺s 𝐶)) = (+g𝐺))
2423oveqd 7170 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑥(+g𝐺)𝑦))
2523oveqd 7170 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑦(+g‘(𝐺s 𝐶))𝑥) = (𝑦(+g𝐺)𝑥))
2624, 25eqeq12d 2836 . . . . . . 7 (𝐶 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2721, 26syl 17 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2820, 27mpbird 259 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
2928ex 415 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥𝐶𝑦𝐶) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3018, 29sylbid 242 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3130ralrimivv 3189 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
32 eqid 2820 . . 3 (Base‘(𝐺s 𝐶)) = (Base‘(𝐺s 𝐶))
33 eqid 2820 . . 3 (+g‘(𝐺s 𝐶)) = (+g‘(𝐺s 𝐶))
3432, 33iscmn 18910 . 2 ((𝐺s 𝐶) ∈ CMnd ↔ ((𝐺s 𝐶) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3512, 31, 34sylanbrc 585 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wral 3137  wss 3933  cmpt 5143  ran crn 5553  cfv 6352  (class class class)co 7153  0cn0 11895  Basecbs 16479  s cress 16480  +gcplusg 16561  0gc0g 16709  Mndcmnd 17907  SubMndcsubmnd 17951  .gcmg 18220  CMndccmn 18902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-n0 11896  df-z 11980  df-uz 12242  df-fz 12891  df-seq 13368  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cmn 18904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator