MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcmn Structured version   Visualization version   GIF version

Theorem cycsubmcmn 19805
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcmn.b 𝐵 = (Base‘𝐺)
cycsubmcmn.t · = (.g𝐺)
cycsubmcmn.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcmn.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmcmn ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥, ·
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubmcmn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cycsubmcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cycsubmcmn.t . . . 4 · = (.g𝐺)
3 cycsubmcmn.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcmn.c . . . 4 𝐶 = ran 𝐹
51, 2, 3, 4cycsubm 19124 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
6 eqid 2731 . . . . . 6 (0g𝐺) = (0g𝐺)
7 eqid 2731 . . . . . 6 (𝐺s 𝐶) = (𝐺s 𝐶)
81, 6, 7issubm2 18727 . . . . 5 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
98adantr 480 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
10 simp3 1137 . . . 4 ((𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd) → (𝐺s 𝐶) ∈ Mnd)
119, 10syl6bi 253 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) → (𝐺s 𝐶) ∈ Mnd))
125, 11mpd 15 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ Mnd)
137submbas 18737 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → 𝐶 = (Base‘(𝐺s 𝐶)))
145, 13syl 17 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 = (Base‘(𝐺s 𝐶)))
1514eqcomd 2737 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (Base‘(𝐺s 𝐶)) = 𝐶)
1615eleq2d 2818 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑥 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑥𝐶))
1715eleq2d 2818 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑦 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑦𝐶))
1816, 17anbi12d 630 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) ↔ (𝑥𝐶𝑦𝐶)))
19 eqid 2731 . . . . . . 7 (+g𝐺) = (+g𝐺)
201, 2, 3, 4, 19cycsubmcom 19126 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
215adantr 480 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → 𝐶 ∈ (SubMnd‘𝐺))
227, 19ressplusg 17242 . . . . . . . . . 10 (𝐶 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g‘(𝐺s 𝐶)))
2322eqcomd 2737 . . . . . . . . 9 (𝐶 ∈ (SubMnd‘𝐺) → (+g‘(𝐺s 𝐶)) = (+g𝐺))
2423oveqd 7429 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑥(+g𝐺)𝑦))
2523oveqd 7429 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑦(+g‘(𝐺s 𝐶))𝑥) = (𝑦(+g𝐺)𝑥))
2624, 25eqeq12d 2747 . . . . . . 7 (𝐶 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2721, 26syl 17 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2820, 27mpbird 257 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
2928ex 412 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥𝐶𝑦𝐶) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3018, 29sylbid 239 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3130ralrimivv 3197 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
32 eqid 2731 . . 3 (Base‘(𝐺s 𝐶)) = (Base‘(𝐺s 𝐶))
33 eqid 2731 . . 3 (+g‘(𝐺s 𝐶)) = (+g‘(𝐺s 𝐶))
3432, 33iscmn 19705 . 2 ((𝐺s 𝐶) ∈ CMnd ↔ ((𝐺s 𝐶) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3512, 31, 34sylanbrc 582 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wss 3948  cmpt 5231  ran crn 5677  cfv 6543  (class class class)co 7412  0cn0 12479  Basecbs 17151  s cress 17180  +gcplusg 17204  0gc0g 17392  Mndcmnd 18665  SubMndcsubmnd 18710  .gcmg 18993  CMndccmn 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-seq 13974  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cmn 19698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator