MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcmn Structured version   Visualization version   GIF version

Theorem cycsubmcmn 19768
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcmn.b 𝐵 = (Base‘𝐺)
cycsubmcmn.t · = (.g𝐺)
cycsubmcmn.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcmn.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmcmn ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥, ·
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubmcmn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cycsubmcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cycsubmcmn.t . . . 4 · = (.g𝐺)
3 cycsubmcmn.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcmn.c . . . 4 𝐶 = ran 𝐹
51, 2, 3, 4cycsubm 19081 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
6 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
7 eqid 2729 . . . . . 6 (𝐺s 𝐶) = (𝐺s 𝐶)
81, 6, 7issubm2 18678 . . . . 5 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
98adantr 480 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
10 simp3 1138 . . . 4 ((𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd) → (𝐺s 𝐶) ∈ Mnd)
119, 10biimtrdi 253 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) → (𝐺s 𝐶) ∈ Mnd))
125, 11mpd 15 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ Mnd)
137submbas 18688 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → 𝐶 = (Base‘(𝐺s 𝐶)))
145, 13syl 17 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 = (Base‘(𝐺s 𝐶)))
1514eqcomd 2735 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (Base‘(𝐺s 𝐶)) = 𝐶)
1615eleq2d 2814 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑥 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑥𝐶))
1715eleq2d 2814 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑦 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑦𝐶))
1816, 17anbi12d 632 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) ↔ (𝑥𝐶𝑦𝐶)))
19 eqid 2729 . . . . . . 7 (+g𝐺) = (+g𝐺)
201, 2, 3, 4, 19cycsubmcom 19083 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
215adantr 480 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → 𝐶 ∈ (SubMnd‘𝐺))
227, 19ressplusg 17195 . . . . . . . . . 10 (𝐶 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g‘(𝐺s 𝐶)))
2322eqcomd 2735 . . . . . . . . 9 (𝐶 ∈ (SubMnd‘𝐺) → (+g‘(𝐺s 𝐶)) = (+g𝐺))
2423oveqd 7366 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑥(+g𝐺)𝑦))
2523oveqd 7366 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑦(+g‘(𝐺s 𝐶))𝑥) = (𝑦(+g𝐺)𝑥))
2624, 25eqeq12d 2745 . . . . . . 7 (𝐶 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2721, 26syl 17 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2820, 27mpbird 257 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
2928ex 412 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥𝐶𝑦𝐶) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3018, 29sylbid 240 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3130ralrimivv 3170 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
32 eqid 2729 . . 3 (Base‘(𝐺s 𝐶)) = (Base‘(𝐺s 𝐶))
33 eqid 2729 . . 3 (+g‘(𝐺s 𝐶)) = (+g‘(𝐺s 𝐶))
3432, 33iscmn 19668 . 2 ((𝐺s 𝐶) ∈ CMnd ↔ ((𝐺s 𝐶) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3512, 31, 34sylanbrc 583 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  0cn0 12384  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608  SubMndcsubmnd 18656  .gcmg 18946  CMndccmn 19659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cmn 19661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator