| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubmcmn | Structured version Visualization version GIF version | ||
| Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycsubmcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| cycsubmcmn.t | ⊢ · = (.g‘𝐺) |
| cycsubmcmn.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
| cycsubmcmn.c | ⊢ 𝐶 = ran 𝐹 |
| Ref | Expression |
|---|---|
| cycsubmcmn | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cycsubmcmn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 3 | cycsubmcmn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
| 4 | cycsubmcmn.c | . . . 4 ⊢ 𝐶 = ran 𝐹 | |
| 5 | 1, 2, 3, 4 | cycsubm 19116 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ (SubMnd‘𝐺)) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (𝐺 ↾s 𝐶) = (𝐺 ↾s 𝐶) | |
| 8 | 1, 6, 7 | issubm2 18713 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd))) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd))) |
| 10 | simp3 1138 | . . . 4 ⊢ ((𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd) → (𝐺 ↾s 𝐶) ∈ Mnd) | |
| 11 | 9, 10 | biimtrdi 253 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐶 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝐶) ∈ Mnd)) |
| 12 | 5, 11 | mpd 15 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ Mnd) |
| 13 | 7 | submbas 18723 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → 𝐶 = (Base‘(𝐺 ↾s 𝐶))) |
| 14 | 5, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 = (Base‘(𝐺 ↾s 𝐶))) |
| 15 | 14 | eqcomd 2735 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (Base‘(𝐺 ↾s 𝐶)) = 𝐶) |
| 16 | 15 | eleq2d 2814 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ↔ 𝑥 ∈ 𝐶)) |
| 17 | 15 | eleq2d 2814 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝑦 ∈ (Base‘(𝐺 ↾s 𝐶)) ↔ 𝑦 ∈ 𝐶)) |
| 18 | 16, 17 | anbi12d 632 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶))) |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 20 | 1, 2, 3, 4, 19 | cycsubmcom 19118 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 21 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐶 ∈ (SubMnd‘𝐺)) |
| 22 | 7, 19 | ressplusg 17230 | . . . . . . . . . 10 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐶))) |
| 23 | 22 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (+g‘(𝐺 ↾s 𝐶)) = (+g‘𝐺)) |
| 24 | 23 | oveqd 7386 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 25 | 23 | oveqd 7386 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) = (𝑦(+g‘𝐺)𝑥)) |
| 26 | 24, 25 | eqeq12d 2745 | . . . . . . 7 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 27 | 21, 26 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 28 | 20, 27 | mpbird 257 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥)) |
| 29 | 28 | ex 412 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
| 30 | 18, 29 | sylbid 240 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
| 31 | 30 | ralrimivv 3176 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝐶))∀𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))(𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥)) |
| 32 | eqid 2729 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝐶)) = (Base‘(𝐺 ↾s 𝐶)) | |
| 33 | eqid 2729 | . . 3 ⊢ (+g‘(𝐺 ↾s 𝐶)) = (+g‘(𝐺 ↾s 𝐶)) | |
| 34 | 32, 33 | iscmn 19703 | . 2 ⊢ ((𝐺 ↾s 𝐶) ∈ CMnd ↔ ((𝐺 ↾s 𝐶) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝐶))∀𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))(𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
| 35 | 12, 31, 34 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ↦ cmpt 5183 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 0gc0g 17378 Mndcmnd 18643 SubMndcsubmnd 18691 .gcmg 18981 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cmn 19696 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |