MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubmcmn Structured version   Visualization version   GIF version

Theorem cycsubmcmn 19489
Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
cycsubmcmn.b 𝐵 = (Base‘𝐺)
cycsubmcmn.t · = (.g𝐺)
cycsubmcmn.f 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
cycsubmcmn.c 𝐶 = ran 𝐹
Assertion
Ref Expression
cycsubmcmn ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥, ·
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubmcmn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cycsubmcmn.b . . . 4 𝐵 = (Base‘𝐺)
2 cycsubmcmn.t . . . 4 · = (.g𝐺)
3 cycsubmcmn.f . . . 4 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴))
4 cycsubmcmn.c . . . 4 𝐶 = ran 𝐹
51, 2, 3, 4cycsubm 18821 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 ∈ (SubMnd‘𝐺))
6 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
7 eqid 2738 . . . . . 6 (𝐺s 𝐶) = (𝐺s 𝐶)
81, 6, 7issubm2 18443 . . . . 5 (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
98adantr 481 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd)))
10 simp3 1137 . . . 4 ((𝐶𝐵 ∧ (0g𝐺) ∈ 𝐶 ∧ (𝐺s 𝐶) ∈ Mnd) → (𝐺s 𝐶) ∈ Mnd)
119, 10syl6bi 252 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐶 ∈ (SubMnd‘𝐺) → (𝐺s 𝐶) ∈ Mnd))
125, 11mpd 15 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ Mnd)
137submbas 18453 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → 𝐶 = (Base‘(𝐺s 𝐶)))
145, 13syl 17 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → 𝐶 = (Base‘(𝐺s 𝐶)))
1514eqcomd 2744 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (Base‘(𝐺s 𝐶)) = 𝐶)
1615eleq2d 2824 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑥 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑥𝐶))
1715eleq2d 2824 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝑦 ∈ (Base‘(𝐺s 𝐶)) ↔ 𝑦𝐶))
1816, 17anbi12d 631 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) ↔ (𝑥𝐶𝑦𝐶)))
19 eqid 2738 . . . . . . 7 (+g𝐺) = (+g𝐺)
201, 2, 3, 4, 19cycsubmcom 18823 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
215adantr 481 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → 𝐶 ∈ (SubMnd‘𝐺))
227, 19ressplusg 17000 . . . . . . . . . 10 (𝐶 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g‘(𝐺s 𝐶)))
2322eqcomd 2744 . . . . . . . . 9 (𝐶 ∈ (SubMnd‘𝐺) → (+g‘(𝐺s 𝐶)) = (+g𝐺))
2423oveqd 7292 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑥(+g𝐺)𝑦))
2523oveqd 7292 . . . . . . . 8 (𝐶 ∈ (SubMnd‘𝐺) → (𝑦(+g‘(𝐺s 𝐶))𝑥) = (𝑦(+g𝐺)𝑥))
2624, 25eqeq12d 2754 . . . . . . 7 (𝐶 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2721, 26syl 17 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
2820, 27mpbird 256 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝐵) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
2928ex 413 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥𝐶𝑦𝐶) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3018, 29sylbid 239 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ((𝑥 ∈ (Base‘(𝐺s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺s 𝐶))) → (𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3130ralrimivv 3122 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥))
32 eqid 2738 . . 3 (Base‘(𝐺s 𝐶)) = (Base‘(𝐺s 𝐶))
33 eqid 2738 . . 3 (+g‘(𝐺s 𝐶)) = (+g‘(𝐺s 𝐶))
3432, 33iscmn 19394 . 2 ((𝐺s 𝐶) ∈ CMnd ↔ ((𝐺s 𝐶) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(𝐺s 𝐶))∀𝑦 ∈ (Base‘(𝐺s 𝐶))(𝑥(+g‘(𝐺s 𝐶))𝑦) = (𝑦(+g‘(𝐺s 𝐶))𝑥)))
3512, 31, 34sylanbrc 583 1 ((𝐺 ∈ Mnd ∧ 𝐴𝐵) → (𝐺s 𝐶) ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  0cn0 12233  Basecbs 16912  s cress 16941  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  SubMndcsubmnd 18429  .gcmg 18700  CMndccmn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cmn 19388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator