Step | Hyp | Ref
| Expression |
1 | | cycsubmcmn.b |
. . . 4
β’ π΅ = (BaseβπΊ) |
2 | | cycsubmcmn.t |
. . . 4
β’ Β· =
(.gβπΊ) |
3 | | cycsubmcmn.f |
. . . 4
β’ πΉ = (π₯ β β0 β¦ (π₯ Β· π΄)) |
4 | | cycsubmcmn.c |
. . . 4
β’ πΆ = ran πΉ |
5 | 1, 2, 3, 4 | cycsubm 19073 |
. . 3
β’ ((πΊ β Mnd β§ π΄ β π΅) β πΆ β (SubMndβπΊ)) |
6 | | eqid 2732 |
. . . . . 6
β’
(0gβπΊ) = (0gβπΊ) |
7 | | eqid 2732 |
. . . . . 6
β’ (πΊ βΎs πΆ) = (πΊ βΎs πΆ) |
8 | 1, 6, 7 | issubm2 18681 |
. . . . 5
β’ (πΊ β Mnd β (πΆ β (SubMndβπΊ) β (πΆ β π΅ β§ (0gβπΊ) β πΆ β§ (πΊ βΎs πΆ) β Mnd))) |
9 | 8 | adantr 481 |
. . . 4
β’ ((πΊ β Mnd β§ π΄ β π΅) β (πΆ β (SubMndβπΊ) β (πΆ β π΅ β§ (0gβπΊ) β πΆ β§ (πΊ βΎs πΆ) β Mnd))) |
10 | | simp3 1138 |
. . . 4
β’ ((πΆ β π΅ β§ (0gβπΊ) β πΆ β§ (πΊ βΎs πΆ) β Mnd) β (πΊ βΎs πΆ) β Mnd) |
11 | 9, 10 | syl6bi 252 |
. . 3
β’ ((πΊ β Mnd β§ π΄ β π΅) β (πΆ β (SubMndβπΊ) β (πΊ βΎs πΆ) β Mnd)) |
12 | 5, 11 | mpd 15 |
. 2
β’ ((πΊ β Mnd β§ π΄ β π΅) β (πΊ βΎs πΆ) β Mnd) |
13 | 7 | submbas 18691 |
. . . . . . . 8
β’ (πΆ β (SubMndβπΊ) β πΆ = (Baseβ(πΊ βΎs πΆ))) |
14 | 5, 13 | syl 17 |
. . . . . . 7
β’ ((πΊ β Mnd β§ π΄ β π΅) β πΆ = (Baseβ(πΊ βΎs πΆ))) |
15 | 14 | eqcomd 2738 |
. . . . . 6
β’ ((πΊ β Mnd β§ π΄ β π΅) β (Baseβ(πΊ βΎs πΆ)) = πΆ) |
16 | 15 | eleq2d 2819 |
. . . . 5
β’ ((πΊ β Mnd β§ π΄ β π΅) β (π₯ β (Baseβ(πΊ βΎs πΆ)) β π₯ β πΆ)) |
17 | 15 | eleq2d 2819 |
. . . . 5
β’ ((πΊ β Mnd β§ π΄ β π΅) β (π¦ β (Baseβ(πΊ βΎs πΆ)) β π¦ β πΆ)) |
18 | 16, 17 | anbi12d 631 |
. . . 4
β’ ((πΊ β Mnd β§ π΄ β π΅) β ((π₯ β (Baseβ(πΊ βΎs πΆ)) β§ π¦ β (Baseβ(πΊ βΎs πΆ))) β (π₯ β πΆ β§ π¦ β πΆ))) |
19 | | eqid 2732 |
. . . . . . 7
β’
(+gβπΊ) = (+gβπΊ) |
20 | 1, 2, 3, 4, 19 | cycsubmcom 19075 |
. . . . . 6
β’ (((πΊ β Mnd β§ π΄ β π΅) β§ (π₯ β πΆ β§ π¦ β πΆ)) β (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯)) |
21 | 5 | adantr 481 |
. . . . . . 7
β’ (((πΊ β Mnd β§ π΄ β π΅) β§ (π₯ β πΆ β§ π¦ β πΆ)) β πΆ β (SubMndβπΊ)) |
22 | 7, 19 | ressplusg 17231 |
. . . . . . . . . 10
β’ (πΆ β (SubMndβπΊ) β
(+gβπΊ) =
(+gβ(πΊ
βΎs πΆ))) |
23 | 22 | eqcomd 2738 |
. . . . . . . . 9
β’ (πΆ β (SubMndβπΊ) β
(+gβ(πΊ
βΎs πΆ)) =
(+gβπΊ)) |
24 | 23 | oveqd 7422 |
. . . . . . . 8
β’ (πΆ β (SubMndβπΊ) β (π₯(+gβ(πΊ βΎs πΆ))π¦) = (π₯(+gβπΊ)π¦)) |
25 | 23 | oveqd 7422 |
. . . . . . . 8
β’ (πΆ β (SubMndβπΊ) β (π¦(+gβ(πΊ βΎs πΆ))π₯) = (π¦(+gβπΊ)π₯)) |
26 | 24, 25 | eqeq12d 2748 |
. . . . . . 7
β’ (πΆ β (SubMndβπΊ) β ((π₯(+gβ(πΊ βΎs πΆ))π¦) = (π¦(+gβ(πΊ βΎs πΆ))π₯) β (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯))) |
27 | 21, 26 | syl 17 |
. . . . . 6
β’ (((πΊ β Mnd β§ π΄ β π΅) β§ (π₯ β πΆ β§ π¦ β πΆ)) β ((π₯(+gβ(πΊ βΎs πΆ))π¦) = (π¦(+gβ(πΊ βΎs πΆ))π₯) β (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯))) |
28 | 20, 27 | mpbird 256 |
. . . . 5
β’ (((πΊ β Mnd β§ π΄ β π΅) β§ (π₯ β πΆ β§ π¦ β πΆ)) β (π₯(+gβ(πΊ βΎs πΆ))π¦) = (π¦(+gβ(πΊ βΎs πΆ))π₯)) |
29 | 28 | ex 413 |
. . . 4
β’ ((πΊ β Mnd β§ π΄ β π΅) β ((π₯ β πΆ β§ π¦ β πΆ) β (π₯(+gβ(πΊ βΎs πΆ))π¦) = (π¦(+gβ(πΊ βΎs πΆ))π₯))) |
30 | 18, 29 | sylbid 239 |
. . 3
β’ ((πΊ β Mnd β§ π΄ β π΅) β ((π₯ β (Baseβ(πΊ βΎs πΆ)) β§ π¦ β (Baseβ(πΊ βΎs πΆ))) β (π₯(+gβ(πΊ βΎs πΆ))π¦) = (π¦(+gβ(πΊ βΎs πΆ))π₯))) |
31 | 30 | ralrimivv 3198 |
. 2
β’ ((πΊ β Mnd β§ π΄ β π΅) β βπ₯ β (Baseβ(πΊ βΎs πΆ))βπ¦ β (Baseβ(πΊ βΎs πΆ))(π₯(+gβ(πΊ βΎs πΆ))π¦) = (π¦(+gβ(πΊ βΎs πΆ))π₯)) |
32 | | eqid 2732 |
. . 3
β’
(Baseβ(πΊ
βΎs πΆ)) =
(Baseβ(πΊ
βΎs πΆ)) |
33 | | eqid 2732 |
. . 3
β’
(+gβ(πΊ βΎs πΆ)) = (+gβ(πΊ βΎs πΆ)) |
34 | 32, 33 | iscmn 19651 |
. 2
β’ ((πΊ βΎs πΆ) β CMnd β ((πΊ βΎs πΆ) β Mnd β§ βπ₯ β (Baseβ(πΊ βΎs πΆ))βπ¦ β (Baseβ(πΊ βΎs πΆ))(π₯(+gβ(πΊ βΎs πΆ))π¦) = (π¦(+gβ(πΊ βΎs πΆ))π₯))) |
35 | 12, 31, 34 | sylanbrc 583 |
1
β’ ((πΊ β Mnd β§ π΄ β π΅) β (πΊ βΎs πΆ) β CMnd) |