| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubmcmn | Structured version Visualization version GIF version | ||
| Description: The set of nonnegative integer powers of an element 𝐴 of a monoid forms a commutative monoid. (Contributed by AV, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| cycsubmcmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| cycsubmcmn.t | ⊢ · = (.g‘𝐺) |
| cycsubmcmn.f | ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) |
| cycsubmcmn.c | ⊢ 𝐶 = ran 𝐹 |
| Ref | Expression |
|---|---|
| cycsubmcmn | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubmcmn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cycsubmcmn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 3 | cycsubmcmn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) | |
| 4 | cycsubmcmn.c | . . . 4 ⊢ 𝐶 = ran 𝐹 | |
| 5 | 1, 2, 3, 4 | cycsubm 19141 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ (SubMnd‘𝐺)) |
| 6 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ (𝐺 ↾s 𝐶) = (𝐺 ↾s 𝐶) | |
| 8 | 1, 6, 7 | issubm2 18738 | . . . . 5 ⊢ (𝐺 ∈ Mnd → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd))) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐶 ∈ (SubMnd‘𝐺) ↔ (𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd))) |
| 10 | simp3 1138 | . . . 4 ⊢ ((𝐶 ⊆ 𝐵 ∧ (0g‘𝐺) ∈ 𝐶 ∧ (𝐺 ↾s 𝐶) ∈ Mnd) → (𝐺 ↾s 𝐶) ∈ Mnd) | |
| 11 | 9, 10 | biimtrdi 253 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐶 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝐶) ∈ Mnd)) |
| 12 | 5, 11 | mpd 15 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ Mnd) |
| 13 | 7 | submbas 18748 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → 𝐶 = (Base‘(𝐺 ↾s 𝐶))) |
| 14 | 5, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 = (Base‘(𝐺 ↾s 𝐶))) |
| 15 | 14 | eqcomd 2736 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (Base‘(𝐺 ↾s 𝐶)) = 𝐶) |
| 16 | 15 | eleq2d 2815 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ↔ 𝑥 ∈ 𝐶)) |
| 17 | 15 | eleq2d 2815 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝑦 ∈ (Base‘(𝐺 ↾s 𝐶)) ↔ 𝑦 ∈ 𝐶)) |
| 18 | 16, 17 | anbi12d 632 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶))) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 20 | 1, 2, 3, 4, 19 | cycsubmcom 19143 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 21 | 5 | adantr 480 | . . . . . . 7 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐶 ∈ (SubMnd‘𝐺)) |
| 22 | 7, 19 | ressplusg 17261 | . . . . . . . . . 10 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐶))) |
| 23 | 22 | eqcomd 2736 | . . . . . . . . 9 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (+g‘(𝐺 ↾s 𝐶)) = (+g‘𝐺)) |
| 24 | 23 | oveqd 7407 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 25 | 23 | oveqd 7407 | . . . . . . . 8 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) = (𝑦(+g‘𝐺)𝑥)) |
| 26 | 24, 25 | eqeq12d 2746 | . . . . . . 7 ⊢ (𝐶 ∈ (SubMnd‘𝐺) → ((𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 27 | 21, 26 | syl 17 | . . . . . 6 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 28 | 20, 27 | mpbird 257 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥)) |
| 29 | 28 | ex 412 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
| 30 | 18, 29 | sylbid 240 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ (Base‘(𝐺 ↾s 𝐶)) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))) → (𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
| 31 | 30 | ralrimivv 3179 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝐶))∀𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))(𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥)) |
| 32 | eqid 2730 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝐶)) = (Base‘(𝐺 ↾s 𝐶)) | |
| 33 | eqid 2730 | . . 3 ⊢ (+g‘(𝐺 ↾s 𝐶)) = (+g‘(𝐺 ↾s 𝐶)) | |
| 34 | 32, 33 | iscmn 19726 | . 2 ⊢ ((𝐺 ↾s 𝐶) ∈ CMnd ↔ ((𝐺 ↾s 𝐶) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝐶))∀𝑦 ∈ (Base‘(𝐺 ↾s 𝐶))(𝑥(+g‘(𝐺 ↾s 𝐶))𝑦) = (𝑦(+g‘(𝐺 ↾s 𝐶))𝑥))) |
| 35 | 12, 31, 34 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → (𝐺 ↾s 𝐶) ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ℕ0cn0 12449 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 SubMndcsubmnd 18716 .gcmg 19006 CMndccmn 19717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-seq 13974 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cmn 19719 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |