| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 2 |  | eqid 2737 | . . 3
⊢
(.g‘𝐺) = (.g‘𝐺) | 
| 3 | 1, 2 | iscyg3 19904 | . 2
⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥))) | 
| 4 |  | eqidd 2738 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) → (Base‘𝐺) = (Base‘𝐺)) | 
| 5 |  | eqidd 2738 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) → (+g‘𝐺) = (+g‘𝐺)) | 
| 6 |  | simpll 767 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) → 𝐺 ∈ Grp) | 
| 7 |  | oveq1 7438 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → (𝑛(.g‘𝐺)𝑥) = (𝑖(.g‘𝐺)𝑥)) | 
| 8 | 7 | eqeq2d 2748 | . . . . . . . . . 10
⊢ (𝑛 = 𝑖 → (𝑦 = (𝑛(.g‘𝐺)𝑥) ↔ 𝑦 = (𝑖(.g‘𝐺)𝑥))) | 
| 9 | 8 | cbvrexvw 3238 | . . . . . . . . 9
⊢
(∃𝑛 ∈
ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥) ↔ ∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g‘𝐺)𝑥)) | 
| 10 | 9 | biimpi 216 | . . . . . . . 8
⊢
(∃𝑛 ∈
ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥) → ∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g‘𝐺)𝑥)) | 
| 11 | 10 | ralimi 3083 | . . . . . . 7
⊢
(∀𝑦 ∈
(Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥) → ∀𝑦 ∈ (Base‘𝐺)∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g‘𝐺)𝑥)) | 
| 12 | 11 | adantl 481 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) → ∀𝑦 ∈ (Base‘𝐺)∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g‘𝐺)𝑥)) | 
| 13 | 12 | 3ad2ant1 1134 | . . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ∀𝑦 ∈ (Base‘𝐺)∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g‘𝐺)𝑥)) | 
| 14 |  | simpll 767 | . . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝐺 ∈ Grp) | 
| 15 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) | 
| 16 | 15 | anim1ci 616 | . . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 ∈ (Base‘𝐺))) | 
| 17 |  | df-3an 1089 | . . . . . . . . . 10
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺)) ↔ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 ∈ (Base‘𝐺))) | 
| 18 | 16, 17 | sylibr 234 | . . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺))) | 
| 19 |  | eqid 2737 | . . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 20 | 1, 2, 19 | mulgdir 19124 | . . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺))) → ((𝑚 + 𝑛)(.g‘𝐺)𝑥) = ((𝑚(.g‘𝐺)𝑥)(+g‘𝐺)(𝑛(.g‘𝐺)𝑥))) | 
| 21 | 14, 18, 20 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛)(.g‘𝐺)𝑥) = ((𝑚(.g‘𝐺)𝑥)(+g‘𝐺)(𝑛(.g‘𝐺)𝑥))) | 
| 22 | 21 | ralrimivva 3202 | . . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑚 + 𝑛)(.g‘𝐺)𝑥) = ((𝑚(.g‘𝐺)𝑥)(+g‘𝐺)(𝑛(.g‘𝐺)𝑥))) | 
| 23 | 22 | adantr 480 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) → ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑚 + 𝑛)(.g‘𝐺)𝑥) = ((𝑚(.g‘𝐺)𝑥)(+g‘𝐺)(𝑛(.g‘𝐺)𝑥))) | 
| 24 | 23 | 3ad2ant1 1134 | . . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑚 + 𝑛)(.g‘𝐺)𝑥) = ((𝑚(.g‘𝐺)𝑥)(+g‘𝐺)(𝑛(.g‘𝐺)𝑥))) | 
| 25 |  | simp2 1138 | . . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺)) | 
| 26 |  | simp3 1139 | . . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺)) | 
| 27 |  | zsscn 12621 | . . . . . 6
⊢ ℤ
⊆ ℂ | 
| 28 | 27 | a1i 11 | . . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ℤ ⊆
ℂ) | 
| 29 | 13, 24, 25, 26, 28 | cyccom 19221 | . . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g‘𝐺)𝑏) = (𝑏(+g‘𝐺)𝑎)) | 
| 30 | 4, 5, 6, 29 | isabld 19813 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) → 𝐺 ∈ Abel) | 
| 31 | 30 | r19.29an 3158 | . 2
⊢ ((𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘𝐺)𝑥)) → 𝐺 ∈ Abel) | 
| 32 | 3, 31 | sylbi 217 | 1
⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Abel) |