MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygabl Structured version   Visualization version   GIF version

Theorem cygabl 19798
Description: A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 20-Jan-2024.)
Assertion
Ref Expression
cygabl (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)

Proof of Theorem cygabl
Dummy variables 𝑛 𝑥 𝑎 𝑏 𝑖 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2731 . . 3 (.g𝐺) = (.g𝐺)
31, 2iscyg3 19793 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)))
4 eqidd 2732 . . . 4 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → (Base‘𝐺) = (Base‘𝐺))
5 eqidd 2732 . . . 4 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → (+g𝐺) = (+g𝐺))
6 simpll 766 . . . 4 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → 𝐺 ∈ Grp)
7 oveq1 7348 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑛(.g𝐺)𝑥) = (𝑖(.g𝐺)𝑥))
87eqeq2d 2742 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝑦 = (𝑛(.g𝐺)𝑥) ↔ 𝑦 = (𝑖(.g𝐺)𝑥)))
98cbvrexvw 3211 . . . . . . . . 9 (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) ↔ ∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g𝐺)𝑥))
109biimpi 216 . . . . . . . 8 (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) → ∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g𝐺)𝑥))
1110ralimi 3069 . . . . . . 7 (∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) → ∀𝑦 ∈ (Base‘𝐺)∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g𝐺)𝑥))
1211adantl 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → ∀𝑦 ∈ (Base‘𝐺)∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g𝐺)𝑥))
13123ad2ant1 1133 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ∀𝑦 ∈ (Base‘𝐺)∃𝑖 ∈ ℤ 𝑦 = (𝑖(.g𝐺)𝑥))
14 simpll 766 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → 𝐺 ∈ Grp)
15 simpr 484 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
1615anim1ci 616 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 ∈ (Base‘𝐺)))
17 df-3an 1088 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺)) ↔ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 ∈ (Base‘𝐺)))
1816, 17sylibr 234 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺)))
19 eqid 2731 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
201, 2, 19mulgdir 19014 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (Base‘𝐺))) → ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
2114, 18, 20syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
2221ralrimivva 3175 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
2322adantr 480 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
24233ad2ant1 1133 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ ((𝑚 + 𝑛)(.g𝐺)𝑥) = ((𝑚(.g𝐺)𝑥)(+g𝐺)(𝑛(.g𝐺)𝑥)))
25 simp2 1137 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺))
26 simp3 1138 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺))
27 zsscn 12471 . . . . . 6 ℤ ⊆ ℂ
2827a1i 11 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ℤ ⊆ ℂ)
2913, 24, 25, 26, 28cyccom 19110 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
304, 5, 6, 29isabld 19702 . . 3 (((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → 𝐺 ∈ Abel)
3130r19.29an 3136 . 2 ((𝐺 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)) → 𝐺 ∈ Abel)
323, 31sylbi 217 1 (𝐺 ∈ CycGrp → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  cfv 6476  (class class class)co 7341  cc 10999   + caddc 11004  cz 12463  Basecbs 17115  +gcplusg 17156  Grpcgrp 18841  .gcmg 18975  Abelcabl 19688  CycGrpccyg 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-seq 13904  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-mulg 18976  df-cmn 19689  df-abl 19690  df-cyg 19785
This theorem is referenced by:  lt6abl  19802  frgpcyg  21505
  Copyright terms: Public domain W3C validator