MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem2a Structured version   Visualization version   GIF version

Theorem cygznlem2a 21096
Description: Lemma for cygzn 21099. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem2a (𝜑𝐹:(Base‘𝑌)⟶𝐵)
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem2a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cygzn.f . . . 4 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
2 fvexd 6896 . . . 4 ((𝜑𝑚 ∈ ℤ) → (𝐿𝑚) ∈ V)
3 cygzn.g . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
4 cyggrp 19741 . . . . . . 7 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
53, 4syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
65adantr 482 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
7 simpr 486 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
8 cygzn.e . . . . . . . 8 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
98ssrab3 4078 . . . . . . 7 𝐸𝐵
10 cygzn.x . . . . . . 7 (𝜑𝑋𝐸)
119, 10sselid 3978 . . . . . 6 (𝜑𝑋𝐵)
1211adantr 482 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝑋𝐵)
13 cygzn.b . . . . . 6 𝐵 = (Base‘𝐺)
14 cygzn.m . . . . . 6 · = (.g𝐺)
1513, 14mulgcl 18956 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
166, 7, 12, 15syl3anc 1372 . . . 4 ((𝜑𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ 𝐵)
17 fveq2 6881 . . . 4 (𝑚 = 𝑘 → (𝐿𝑚) = (𝐿𝑘))
18 oveq1 7403 . . . 4 (𝑚 = 𝑘 → (𝑚 · 𝑋) = (𝑘 · 𝑋))
19 cygzn.n . . . . . . . 8 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
20 cygzn.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
21 cygzn.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑌)
2213, 19, 20, 14, 21, 8, 3, 10cygznlem1 21095 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿𝑚) = (𝐿𝑘) ↔ (𝑚 · 𝑋) = (𝑘 · 𝑋)))
2322biimpd 228 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿𝑚) = (𝐿𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋)))
2423exp32 422 . . . . 5 (𝜑 → (𝑚 ∈ ℤ → (𝑘 ∈ ℤ → ((𝐿𝑚) = (𝐿𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋)))))
25243imp2 1350 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝐿𝑚) = (𝐿𝑘))) → (𝑚 · 𝑋) = (𝑘 · 𝑋))
261, 2, 16, 17, 18, 25fliftfund 7297 . . 3 (𝜑 → Fun 𝐹)
271, 2, 16fliftf 7299 . . 3 (𝜑 → (Fun 𝐹𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵))
2826, 27mpbid 231 . 2 (𝜑𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵)
29 hashcl 14303 . . . . . . . . . . 11 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
3029adantl 483 . . . . . . . . . 10 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
31 0nn0 12474 . . . . . . . . . . 11 0 ∈ ℕ0
3231a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
3330, 32ifclda 4559 . . . . . . . . 9 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
3419, 33eqeltrid 2838 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
35 eqid 2733 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
3620, 35, 21znzrhfo 21076 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
3734, 36syl 17 . . . . . . 7 (𝜑𝐿:ℤ–onto→(Base‘𝑌))
38 fof 6795 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
3937, 38syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
4039feqmptd 6949 . . . . 5 (𝜑𝐿 = (𝑚 ∈ ℤ ↦ (𝐿𝑚)))
4140rneqd 5932 . . . 4 (𝜑 → ran 𝐿 = ran (𝑚 ∈ ℤ ↦ (𝐿𝑚)))
42 forn 6798 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
4337, 42syl 17 . . . 4 (𝜑 → ran 𝐿 = (Base‘𝑌))
4441, 43eqtr3d 2775 . . 3 (𝜑 → ran (𝑚 ∈ ℤ ↦ (𝐿𝑚)) = (Base‘𝑌))
4544feq2d 6693 . 2 (𝜑 → (𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵𝐹:(Base‘𝑌)⟶𝐵))
4628, 45mpbid 231 1 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  ifcif 4524  cop 4630  cmpt 5227  ran crn 5673  Fun wfun 6529  wf 6531  ontowfo 6533  cfv 6535  (class class class)co 7396  Fincfn 8927  0cc0 11097  0cn0 12459  cz 12545  chash 14277  Basecbs 17131  Grpcgrp 18806  .gcmg 18935  CycGrpccyg 19728  ℤRHomczrh 21022  ℤ/nczn 21025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-oadd 8457  df-omul 8458  df-er 8691  df-ec 8693  df-qs 8697  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-sup 9424  df-inf 9425  df-oi 9492  df-card 9921  df-acn 9924  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-rp 12962  df-fz 13472  df-fl 13744  df-mod 13822  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-dvds 16185  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-0g 17374  df-imas 17441  df-qus 17442  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-mhm 18658  df-grp 18809  df-minusg 18810  df-sbg 18811  df-mulg 18936  df-subg 18988  df-nsg 18989  df-eqg 18990  df-ghm 19075  df-od 19380  df-cmn 19634  df-abl 19635  df-cyg 19729  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-oppr 20128  df-dvdsr 20149  df-rnghom 20229  df-subrg 20338  df-lmod 20450  df-lss 20520  df-lsp 20560  df-sra 20762  df-rgmod 20763  df-lidl 20764  df-rsp 20765  df-2idl 20833  df-cnfld 20919  df-zring 20992  df-zrh 21026  df-zn 21029
This theorem is referenced by:  cygznlem2  21097  cygznlem3  21098
  Copyright terms: Public domain W3C validator