|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cygznlem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for cygzn 21589. (Contributed by Mario Carneiro, 23-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| cygzn.b | ⊢ 𝐵 = (Base‘𝐺) | 
| cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | 
| cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | 
| cygzn.m | ⊢ · = (.g‘𝐺) | 
| cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) | 
| cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | 
| cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) | 
| cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) | 
| cygzn.f | ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) | 
| Ref | Expression | 
|---|---|
| cygznlem2a | ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cygzn.f | . . . 4 ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) | |
| 2 | fvexd 6921 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ V) | |
| 3 | cygzn.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
| 4 | cyggrp 19908 | . . . . . . 7 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp) | 
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
| 8 | cygzn.e | . . . . . . . 8 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 9 | 8 | ssrab3 4082 | . . . . . . 7 ⊢ 𝐸 ⊆ 𝐵 | 
| 10 | cygzn.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 11 | 9, 10 | sselid 3981 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑋 ∈ 𝐵) | 
| 13 | cygzn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | cygzn.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 15 | 13, 14 | mulgcl 19109 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑚 · 𝑋) ∈ 𝐵) | 
| 16 | 6, 7, 12, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ 𝐵) | 
| 17 | fveq2 6906 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝐿‘𝑚) = (𝐿‘𝑘)) | |
| 18 | oveq1 7438 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝑚 · 𝑋) = (𝑘 · 𝑋)) | |
| 19 | cygzn.n | . . . . . . . 8 ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
| 20 | cygzn.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 21 | cygzn.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 22 | 13, 19, 20, 14, 21, 8, 3, 10 | cygznlem1 21585 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) ↔ (𝑚 · 𝑋) = (𝑘 · 𝑋))) | 
| 23 | 22 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))) | 
| 24 | 23 | exp32 420 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ ℤ → (𝑘 ∈ ℤ → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))))) | 
| 25 | 24 | 3imp2 1350 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝐿‘𝑚) = (𝐿‘𝑘))) → (𝑚 · 𝑋) = (𝑘 · 𝑋)) | 
| 26 | 1, 2, 16, 17, 18, 25 | fliftfund 7333 | . . 3 ⊢ (𝜑 → Fun 𝐹) | 
| 27 | 1, 2, 16 | fliftf 7335 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵)) | 
| 28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵) | 
| 29 | hashcl 14395 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 30 | 29 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) | 
| 31 | 0nn0 12541 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
| 32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0) | 
| 33 | 30, 32 | ifclda 4561 | . . . . . . . . 9 ⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) | 
| 34 | 19, 33 | eqeltrid 2845 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | 
| 35 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 36 | 20, 35, 21 | znzrhfo 21566 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑌)) | 
| 37 | 34, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐿:ℤ–onto→(Base‘𝑌)) | 
| 38 | fof 6820 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) | |
| 39 | 37, 38 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) | 
| 40 | 39 | feqmptd 6977 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) | 
| 41 | 40 | rneqd 5949 | . . . 4 ⊢ (𝜑 → ran 𝐿 = ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) | 
| 42 | forn 6823 | . . . . 5 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) | |
| 43 | 37, 42 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐿 = (Base‘𝑌)) | 
| 44 | 41, 43 | eqtr3d 2779 | . . 3 ⊢ (𝜑 → ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚)) = (Base‘𝑌)) | 
| 45 | 44 | feq2d 6722 | . 2 ⊢ (𝜑 → (𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵 ↔ 𝐹:(Base‘𝑌)⟶𝐵)) | 
| 46 | 28, 45 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 ifcif 4525 〈cop 4632 ↦ cmpt 5225 ran crn 5686 Fun wfun 6555 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 0cc0 11155 ℕ0cn0 12526 ℤcz 12613 ♯chash 14369 Basecbs 17247 Grpcgrp 18951 .gcmg 19085 CycGrpccyg 19895 ℤRHomczrh 21510 ℤ/nℤczn 21513 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-imas 17553 df-qus 17554 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-nsg 19142 df-eqg 19143 df-ghm 19231 df-od 19546 df-cmn 19800 df-abl 19801 df-cyg 19896 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-2idl 21260 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-zn 21517 | 
| This theorem is referenced by: cygznlem2 21587 cygznlem3 21588 | 
| Copyright terms: Public domain | W3C validator |