MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem2a Structured version   Visualization version   GIF version

Theorem cygznlem2a 20379
Description: Lemma for cygzn 20382. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem2a (𝜑𝐹:(Base‘𝑌)⟶𝐵)
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem2a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cygzn.f . . . 4 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
2 fvexd 6683 . . . 4 ((𝜑𝑚 ∈ ℤ) → (𝐿𝑚) ∈ V)
3 cygzn.g . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
4 cyggrp 19121 . . . . . . 7 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
53, 4syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
65adantr 484 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
7 simpr 488 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
8 cygzn.e . . . . . . . 8 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
98ssrab3 3969 . . . . . . 7 𝐸𝐵
10 cygzn.x . . . . . . 7 (𝜑𝑋𝐸)
119, 10sseldi 3873 . . . . . 6 (𝜑𝑋𝐵)
1211adantr 484 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝑋𝐵)
13 cygzn.b . . . . . 6 𝐵 = (Base‘𝐺)
14 cygzn.m . . . . . 6 · = (.g𝐺)
1513, 14mulgcl 18356 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
166, 7, 12, 15syl3anc 1372 . . . 4 ((𝜑𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ 𝐵)
17 fveq2 6668 . . . 4 (𝑚 = 𝑘 → (𝐿𝑚) = (𝐿𝑘))
18 oveq1 7171 . . . 4 (𝑚 = 𝑘 → (𝑚 · 𝑋) = (𝑘 · 𝑋))
19 cygzn.n . . . . . . . 8 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
20 cygzn.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
21 cygzn.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑌)
2213, 19, 20, 14, 21, 8, 3, 10cygznlem1 20378 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿𝑚) = (𝐿𝑘) ↔ (𝑚 · 𝑋) = (𝑘 · 𝑋)))
2322biimpd 232 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿𝑚) = (𝐿𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋)))
2423exp32 424 . . . . 5 (𝜑 → (𝑚 ∈ ℤ → (𝑘 ∈ ℤ → ((𝐿𝑚) = (𝐿𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋)))))
25243imp2 1350 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝐿𝑚) = (𝐿𝑘))) → (𝑚 · 𝑋) = (𝑘 · 𝑋))
261, 2, 16, 17, 18, 25fliftfund 7073 . . 3 (𝜑 → Fun 𝐹)
271, 2, 16fliftf 7075 . . 3 (𝜑 → (Fun 𝐹𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵))
2826, 27mpbid 235 . 2 (𝜑𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵)
29 hashcl 13802 . . . . . . . . . . 11 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
3029adantl 485 . . . . . . . . . 10 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
31 0nn0 11984 . . . . . . . . . . 11 0 ∈ ℕ0
3231a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
3330, 32ifclda 4446 . . . . . . . . 9 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
3419, 33eqeltrid 2837 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
35 eqid 2738 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
3620, 35, 21znzrhfo 20359 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
3734, 36syl 17 . . . . . . 7 (𝜑𝐿:ℤ–onto→(Base‘𝑌))
38 fof 6586 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
3937, 38syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
4039feqmptd 6731 . . . . 5 (𝜑𝐿 = (𝑚 ∈ ℤ ↦ (𝐿𝑚)))
4140rneqd 5775 . . . 4 (𝜑 → ran 𝐿 = ran (𝑚 ∈ ℤ ↦ (𝐿𝑚)))
42 forn 6589 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
4337, 42syl 17 . . . 4 (𝜑 → ran 𝐿 = (Base‘𝑌))
4441, 43eqtr3d 2775 . . 3 (𝜑 → ran (𝑚 ∈ ℤ ↦ (𝐿𝑚)) = (Base‘𝑌))
4544feq2d 6484 . 2 (𝜑 → (𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵𝐹:(Base‘𝑌)⟶𝐵))
4628, 45mpbid 235 1 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2113  {crab 3057  Vcvv 3397  ifcif 4411  cop 4519  cmpt 5107  ran crn 5520  Fun wfun 6327  wf 6329  ontowfo 6331  cfv 6333  (class class class)co 7164  Fincfn 8548  0cc0 10608  0cn0 11969  cz 12055  chash 13775  Basecbs 16579  Grpcgrp 18212  .gcmg 18335  CycGrpccyg 19108  ℤRHomczrh 20313  ℤ/nczn 20316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-tpos 7914  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-oadd 8128  df-omul 8129  df-er 8313  df-ec 8315  df-qs 8319  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-oi 9040  df-card 9434  df-acn 9437  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-rp 12466  df-fz 12975  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-dvds 15693  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-0g 16811  df-imas 16877  df-qus 16878  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-mhm 18065  df-grp 18215  df-minusg 18216  df-sbg 18217  df-mulg 18336  df-subg 18387  df-nsg 18388  df-eqg 18389  df-ghm 18467  df-od 18767  df-cmn 19019  df-abl 19020  df-cyg 19109  df-mgp 19352  df-ur 19364  df-ring 19411  df-cring 19412  df-oppr 19488  df-dvdsr 19506  df-rnghom 19582  df-subrg 19645  df-lmod 19748  df-lss 19816  df-lsp 19856  df-sra 20056  df-rgmod 20057  df-lidl 20058  df-rsp 20059  df-2idl 20117  df-cnfld 20211  df-zring 20283  df-zrh 20317  df-zn 20320
This theorem is referenced by:  cygznlem2  20380  cygznlem3  20381
  Copyright terms: Public domain W3C validator