| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cygznlem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for cygzn 21507. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| cygzn.b | ⊢ 𝐵 = (Base‘𝐺) |
| cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) |
| cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| cygzn.m | ⊢ · = (.g‘𝐺) |
| cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| cygzn.f | ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) |
| Ref | Expression |
|---|---|
| cygznlem2a | ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.f | . . . 4 ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) | |
| 2 | fvexd 6837 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ V) | |
| 3 | cygzn.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
| 4 | cyggrp 19802 | . . . . . . 7 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
| 8 | cygzn.e | . . . . . . . 8 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 9 | 8 | ssrab3 4029 | . . . . . . 7 ⊢ 𝐸 ⊆ 𝐵 |
| 10 | cygzn.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 11 | 9, 10 | sselid 3927 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑋 ∈ 𝐵) |
| 13 | cygzn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | cygzn.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 15 | 13, 14 | mulgcl 19004 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑚 · 𝑋) ∈ 𝐵) |
| 16 | 6, 7, 12, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ 𝐵) |
| 17 | fveq2 6822 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝐿‘𝑚) = (𝐿‘𝑘)) | |
| 18 | oveq1 7353 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝑚 · 𝑋) = (𝑘 · 𝑋)) | |
| 19 | cygzn.n | . . . . . . . 8 ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
| 20 | cygzn.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 21 | cygzn.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 22 | 13, 19, 20, 14, 21, 8, 3, 10 | cygznlem1 21503 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) ↔ (𝑚 · 𝑋) = (𝑘 · 𝑋))) |
| 23 | 22 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))) |
| 24 | 23 | exp32 420 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ ℤ → (𝑘 ∈ ℤ → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))))) |
| 25 | 24 | 3imp2 1350 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝐿‘𝑚) = (𝐿‘𝑘))) → (𝑚 · 𝑋) = (𝑘 · 𝑋)) |
| 26 | 1, 2, 16, 17, 18, 25 | fliftfund 7247 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 27 | 1, 2, 16 | fliftf 7249 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵)) |
| 28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵) |
| 29 | hashcl 14263 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 30 | 29 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
| 31 | 0nn0 12396 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
| 32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0) |
| 33 | 30, 32 | ifclda 4508 | . . . . . . . . 9 ⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) |
| 34 | 19, 33 | eqeltrid 2835 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 35 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 36 | 20, 35, 21 | znzrhfo 21484 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑌)) |
| 37 | 34, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐿:ℤ–onto→(Base‘𝑌)) |
| 38 | fof 6735 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) | |
| 39 | 37, 38 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
| 40 | 39 | feqmptd 6890 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) |
| 41 | 40 | rneqd 5877 | . . . 4 ⊢ (𝜑 → ran 𝐿 = ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) |
| 42 | forn 6738 | . . . . 5 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) | |
| 43 | 37, 42 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐿 = (Base‘𝑌)) |
| 44 | 41, 43 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚)) = (Base‘𝑌)) |
| 45 | 44 | feq2d 6635 | . 2 ⊢ (𝜑 → (𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵 ↔ 𝐹:(Base‘𝑌)⟶𝐵)) |
| 46 | 28, 45 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ifcif 4472 〈cop 4579 ↦ cmpt 5170 ran crn 5615 Fun wfun 6475 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 0cc0 11006 ℕ0cn0 12381 ℤcz 12468 ♯chash 14237 Basecbs 17120 Grpcgrp 18846 .gcmg 18980 CycGrpccyg 19789 ℤRHomczrh 21436 ℤ/nℤczn 21439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 df-od 19440 df-cmn 19694 df-abl 19695 df-cyg 19790 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-rsp 21146 df-2idl 21187 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-zn 21443 |
| This theorem is referenced by: cygznlem2 21505 cygznlem3 21506 |
| Copyright terms: Public domain | W3C validator |