![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cygznlem2a | Structured version Visualization version GIF version |
Description: Lemma for cygzn 21612. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
cygzn.b | ⊢ 𝐵 = (Base‘𝐺) |
cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) |
cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cygzn.m | ⊢ · = (.g‘𝐺) |
cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
cygzn.f | ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) |
Ref | Expression |
---|---|
cygznlem2a | ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygzn.f | . . . 4 ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) | |
2 | fvexd 6935 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ V) | |
3 | cygzn.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
4 | cyggrp 19932 | . . . . . . 7 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
8 | cygzn.e | . . . . . . . 8 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
9 | 8 | ssrab3 4105 | . . . . . . 7 ⊢ 𝐸 ⊆ 𝐵 |
10 | cygzn.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
11 | 9, 10 | sselid 4006 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑋 ∈ 𝐵) |
13 | cygzn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
14 | cygzn.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
15 | 13, 14 | mulgcl 19131 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑚 · 𝑋) ∈ 𝐵) |
16 | 6, 7, 12, 15 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ 𝐵) |
17 | fveq2 6920 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝐿‘𝑚) = (𝐿‘𝑘)) | |
18 | oveq1 7455 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝑚 · 𝑋) = (𝑘 · 𝑋)) | |
19 | cygzn.n | . . . . . . . 8 ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
20 | cygzn.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
21 | cygzn.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
22 | 13, 19, 20, 14, 21, 8, 3, 10 | cygznlem1 21608 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) ↔ (𝑚 · 𝑋) = (𝑘 · 𝑋))) |
23 | 22 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))) |
24 | 23 | exp32 420 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ ℤ → (𝑘 ∈ ℤ → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))))) |
25 | 24 | 3imp2 1349 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝐿‘𝑚) = (𝐿‘𝑘))) → (𝑚 · 𝑋) = (𝑘 · 𝑋)) |
26 | 1, 2, 16, 17, 18, 25 | fliftfund 7349 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
27 | 1, 2, 16 | fliftf 7351 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵)) |
28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵) |
29 | hashcl 14405 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
30 | 29 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
31 | 0nn0 12568 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0) |
33 | 30, 32 | ifclda 4583 | . . . . . . . . 9 ⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) |
34 | 19, 33 | eqeltrid 2848 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
35 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
36 | 20, 35, 21 | znzrhfo 21589 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑌)) |
37 | 34, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐿:ℤ–onto→(Base‘𝑌)) |
38 | fof 6834 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) | |
39 | 37, 38 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
40 | 39 | feqmptd 6990 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) |
41 | 40 | rneqd 5963 | . . . 4 ⊢ (𝜑 → ran 𝐿 = ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) |
42 | forn 6837 | . . . . 5 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) | |
43 | 37, 42 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐿 = (Base‘𝑌)) |
44 | 41, 43 | eqtr3d 2782 | . . 3 ⊢ (𝜑 → ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚)) = (Base‘𝑌)) |
45 | 44 | feq2d 6733 | . 2 ⊢ (𝜑 → (𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵 ↔ 𝐹:(Base‘𝑌)⟶𝐵)) |
46 | 28, 45 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ifcif 4548 〈cop 4654 ↦ cmpt 5249 ran crn 5701 Fun wfun 6567 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 0cc0 11184 ℕ0cn0 12553 ℤcz 12639 ♯chash 14379 Basecbs 17258 Grpcgrp 18973 .gcmg 19107 CycGrpccyg 19919 ℤRHomczrh 21533 ℤ/nℤczn 21536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-od 19570 df-cmn 19824 df-abl 19825 df-cyg 19920 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-zn 21540 |
This theorem is referenced by: cygznlem2 21610 cygznlem3 21611 |
Copyright terms: Public domain | W3C validator |