| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cygznlem2a | Structured version Visualization version GIF version | ||
| Description: Lemma for cygzn 21477. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| cygzn.b | ⊢ 𝐵 = (Base‘𝐺) |
| cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) |
| cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| cygzn.m | ⊢ · = (.g‘𝐺) |
| cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| cygzn.f | ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) |
| Ref | Expression |
|---|---|
| cygznlem2a | ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.f | . . . 4 ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) | |
| 2 | fvexd 6837 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ V) | |
| 3 | cygzn.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
| 4 | cyggrp 19769 | . . . . . . 7 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
| 8 | cygzn.e | . . . . . . . 8 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 9 | 8 | ssrab3 4033 | . . . . . . 7 ⊢ 𝐸 ⊆ 𝐵 |
| 10 | cygzn.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 11 | 9, 10 | sselid 3933 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → 𝑋 ∈ 𝐵) |
| 13 | cygzn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 14 | cygzn.m | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 15 | 13, 14 | mulgcl 18970 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑚 · 𝑋) ∈ 𝐵) |
| 16 | 6, 7, 12, 15 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ 𝐵) |
| 17 | fveq2 6822 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝐿‘𝑚) = (𝐿‘𝑘)) | |
| 18 | oveq1 7356 | . . . 4 ⊢ (𝑚 = 𝑘 → (𝑚 · 𝑋) = (𝑘 · 𝑋)) | |
| 19 | cygzn.n | . . . . . . . 8 ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
| 20 | cygzn.y | . . . . . . . 8 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 21 | cygzn.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 22 | 13, 19, 20, 14, 21, 8, 3, 10 | cygznlem1 21473 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) ↔ (𝑚 · 𝑋) = (𝑘 · 𝑋))) |
| 23 | 22 | biimpd 229 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))) |
| 24 | 23 | exp32 420 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ ℤ → (𝑘 ∈ ℤ → ((𝐿‘𝑚) = (𝐿‘𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋))))) |
| 25 | 24 | 3imp2 1350 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝐿‘𝑚) = (𝐿‘𝑘))) → (𝑚 · 𝑋) = (𝑘 · 𝑋)) |
| 26 | 1, 2, 16, 17, 18, 25 | fliftfund 7250 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 27 | 1, 2, 16 | fliftf 7252 | . . 3 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵)) |
| 28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵) |
| 29 | hashcl 14263 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 30 | 29 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0) |
| 31 | 0nn0 12399 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
| 32 | 31 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0) |
| 33 | 30, 32 | ifclda 4512 | . . . . . . . . 9 ⊢ (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) |
| 34 | 19, 33 | eqeltrid 2832 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 35 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 36 | 20, 35, 21 | znzrhfo 21454 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑌)) |
| 37 | 34, 36 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐿:ℤ–onto→(Base‘𝑌)) |
| 38 | fof 6736 | . . . . . . 7 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) | |
| 39 | 37, 38 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
| 40 | 39 | feqmptd 6891 | . . . . 5 ⊢ (𝜑 → 𝐿 = (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) |
| 41 | 40 | rneqd 5880 | . . . 4 ⊢ (𝜑 → ran 𝐿 = ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))) |
| 42 | forn 6739 | . . . . 5 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) | |
| 43 | 37, 42 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐿 = (Base‘𝑌)) |
| 44 | 41, 43 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚)) = (Base‘𝑌)) |
| 45 | 44 | feq2d 6636 | . 2 ⊢ (𝜑 → (𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿‘𝑚))⟶𝐵 ↔ 𝐹:(Base‘𝑌)⟶𝐵)) |
| 46 | 28, 45 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ifcif 4476 〈cop 4583 ↦ cmpt 5173 ran crn 5620 Fun wfun 6476 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 0cc0 11009 ℕ0cn0 12384 ℤcz 12471 ♯chash 14237 Basecbs 17120 Grpcgrp 18812 .gcmg 18946 CycGrpccyg 19756 ℤRHomczrh 21406 ℤ/nℤczn 21409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-omul 8393 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 df-od 19407 df-cmn 19661 df-abl 19662 df-cyg 19757 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-2idl 21157 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-zn 21413 |
| This theorem is referenced by: cygznlem2 21475 cygznlem3 21476 |
| Copyright terms: Public domain | W3C validator |