MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuen Structured version   Visualization version   GIF version

Theorem djuen 10114
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 0ex 5269 . . . . 5 ∅ ∈ V
2 relen 8895 . . . . . 6 Rel ≈
32brrelex1i 5693 . . . . 5 (𝐴𝐵𝐴 ∈ V)
4 xpsnen2g 9016 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
51, 3, 4sylancr 587 . . . 4 (𝐴𝐵 → ({∅} × 𝐴) ≈ 𝐴)
62brrelex2i 5694 . . . . . . 7 (𝐴𝐵𝐵 ∈ V)
7 xpsnen2g 9016 . . . . . . 7 ((∅ ∈ V ∧ 𝐵 ∈ V) → ({∅} × 𝐵) ≈ 𝐵)
81, 6, 7sylancr 587 . . . . . 6 (𝐴𝐵 → ({∅} × 𝐵) ≈ 𝐵)
98ensymd 8952 . . . . 5 (𝐴𝐵𝐵 ≈ ({∅} × 𝐵))
10 entr 8953 . . . . 5 ((𝐴𝐵𝐵 ≈ ({∅} × 𝐵)) → 𝐴 ≈ ({∅} × 𝐵))
119, 10mpdan 685 . . . 4 (𝐴𝐵𝐴 ≈ ({∅} × 𝐵))
12 entr 8953 . . . 4 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐵)) → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
135, 11, 12syl2anc 584 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
14 1on 8429 . . . . 5 1o ∈ On
152brrelex1i 5693 . . . . 5 (𝐶𝐷𝐶 ∈ V)
16 xpsnen2g 9016 . . . . 5 ((1o ∈ On ∧ 𝐶 ∈ V) → ({1o} × 𝐶) ≈ 𝐶)
1714, 15, 16sylancr 587 . . . 4 (𝐶𝐷 → ({1o} × 𝐶) ≈ 𝐶)
182brrelex2i 5694 . . . . . . 7 (𝐶𝐷𝐷 ∈ V)
19 xpsnen2g 9016 . . . . . . 7 ((1o ∈ On ∧ 𝐷 ∈ V) → ({1o} × 𝐷) ≈ 𝐷)
2014, 18, 19sylancr 587 . . . . . 6 (𝐶𝐷 → ({1o} × 𝐷) ≈ 𝐷)
2120ensymd 8952 . . . . 5 (𝐶𝐷𝐷 ≈ ({1o} × 𝐷))
22 entr 8953 . . . . 5 ((𝐶𝐷𝐷 ≈ ({1o} × 𝐷)) → 𝐶 ≈ ({1o} × 𝐷))
2321, 22mpdan 685 . . . 4 (𝐶𝐷𝐶 ≈ ({1o} × 𝐷))
24 entr 8953 . . . 4 ((({1o} × 𝐶) ≈ 𝐶𝐶 ≈ ({1o} × 𝐷)) → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
2517, 23, 24syl2anc 584 . . 3 (𝐶𝐷 → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
26 xp01disjl 8443 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
27 xp01disjl 8443 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅
28 unen 8997 . . . 4 (((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
2926, 27, 28mpanr12 703 . . 3 ((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
3013, 25, 29syl2an 596 . 2 ((𝐴𝐵𝐶𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
31 df-dju 9846 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
32 df-dju 9846 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
3330, 31, 323brtr4g 5144 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3446  cun 3911  cin 3912  c0 4287  {csn 4591   class class class wbr 5110   × cxp 5636  Oncon0 6322  1oc1o 8410  cen 8887  cdju 9843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-1st 7926  df-2nd 7927  df-1o 8417  df-er 8655  df-en 8891  df-dju 9846
This theorem is referenced by:  djuenun  10115  cardadju  10139  nnadju  10142  ficardadju  10144  pwsdompw  10149  ackbij1lem5  10169  ackbij1lem9  10173  gchhar  10624
  Copyright terms: Public domain W3C validator