MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuen Structured version   Visualization version   GIF version

Theorem djuen 9925
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 0ex 5231 . . . . 5 ∅ ∈ V
2 relen 8738 . . . . . 6 Rel ≈
32brrelex1i 5643 . . . . 5 (𝐴𝐵𝐴 ∈ V)
4 xpsnen2g 8852 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
51, 3, 4sylancr 587 . . . 4 (𝐴𝐵 → ({∅} × 𝐴) ≈ 𝐴)
62brrelex2i 5644 . . . . . . 7 (𝐴𝐵𝐵 ∈ V)
7 xpsnen2g 8852 . . . . . . 7 ((∅ ∈ V ∧ 𝐵 ∈ V) → ({∅} × 𝐵) ≈ 𝐵)
81, 6, 7sylancr 587 . . . . . 6 (𝐴𝐵 → ({∅} × 𝐵) ≈ 𝐵)
98ensymd 8791 . . . . 5 (𝐴𝐵𝐵 ≈ ({∅} × 𝐵))
10 entr 8792 . . . . 5 ((𝐴𝐵𝐵 ≈ ({∅} × 𝐵)) → 𝐴 ≈ ({∅} × 𝐵))
119, 10mpdan 684 . . . 4 (𝐴𝐵𝐴 ≈ ({∅} × 𝐵))
12 entr 8792 . . . 4 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐵)) → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
135, 11, 12syl2anc 584 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
14 1on 8309 . . . . 5 1o ∈ On
152brrelex1i 5643 . . . . 5 (𝐶𝐷𝐶 ∈ V)
16 xpsnen2g 8852 . . . . 5 ((1o ∈ On ∧ 𝐶 ∈ V) → ({1o} × 𝐶) ≈ 𝐶)
1714, 15, 16sylancr 587 . . . 4 (𝐶𝐷 → ({1o} × 𝐶) ≈ 𝐶)
182brrelex2i 5644 . . . . . . 7 (𝐶𝐷𝐷 ∈ V)
19 xpsnen2g 8852 . . . . . . 7 ((1o ∈ On ∧ 𝐷 ∈ V) → ({1o} × 𝐷) ≈ 𝐷)
2014, 18, 19sylancr 587 . . . . . 6 (𝐶𝐷 → ({1o} × 𝐷) ≈ 𝐷)
2120ensymd 8791 . . . . 5 (𝐶𝐷𝐷 ≈ ({1o} × 𝐷))
22 entr 8792 . . . . 5 ((𝐶𝐷𝐷 ≈ ({1o} × 𝐷)) → 𝐶 ≈ ({1o} × 𝐷))
2321, 22mpdan 684 . . . 4 (𝐶𝐷𝐶 ≈ ({1o} × 𝐷))
24 entr 8792 . . . 4 ((({1o} × 𝐶) ≈ 𝐶𝐶 ≈ ({1o} × 𝐷)) → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
2517, 23, 24syl2anc 584 . . 3 (𝐶𝐷 → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
26 xp01disjl 8322 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
27 xp01disjl 8322 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅
28 unen 8836 . . . 4 (((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
2926, 27, 28mpanr12 702 . . 3 ((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
3013, 25, 29syl2an 596 . 2 ((𝐴𝐵𝐶𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
31 df-dju 9659 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
32 df-dju 9659 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
3330, 31, 323brtr4g 5108 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  c0 4256  {csn 4561   class class class wbr 5074   × cxp 5587  Oncon0 6266  1oc1o 8290  cen 8730  cdju 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dju 9659
This theorem is referenced by:  djuenun  9926  cardadju  9950  nnadju  9953  ficardadju  9955  pwsdompw  9960  ackbij1lem5  9980  ackbij1lem9  9984  gchhar  10435
  Copyright terms: Public domain W3C validator