MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuen Structured version   Visualization version   GIF version

Theorem djuen 10061
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 0ex 5243 . . . . 5 ∅ ∈ V
2 relen 8874 . . . . . 6 Rel ≈
32brrelex1i 5670 . . . . 5 (𝐴𝐵𝐴 ∈ V)
4 xpsnen2g 8983 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
51, 3, 4sylancr 587 . . . 4 (𝐴𝐵 → ({∅} × 𝐴) ≈ 𝐴)
62brrelex2i 5671 . . . . . . 7 (𝐴𝐵𝐵 ∈ V)
7 xpsnen2g 8983 . . . . . . 7 ((∅ ∈ V ∧ 𝐵 ∈ V) → ({∅} × 𝐵) ≈ 𝐵)
81, 6, 7sylancr 587 . . . . . 6 (𝐴𝐵 → ({∅} × 𝐵) ≈ 𝐵)
98ensymd 8927 . . . . 5 (𝐴𝐵𝐵 ≈ ({∅} × 𝐵))
10 entr 8928 . . . . 5 ((𝐴𝐵𝐵 ≈ ({∅} × 𝐵)) → 𝐴 ≈ ({∅} × 𝐵))
119, 10mpdan 687 . . . 4 (𝐴𝐵𝐴 ≈ ({∅} × 𝐵))
12 entr 8928 . . . 4 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐵)) → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
135, 11, 12syl2anc 584 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
14 1on 8397 . . . . 5 1o ∈ On
152brrelex1i 5670 . . . . 5 (𝐶𝐷𝐶 ∈ V)
16 xpsnen2g 8983 . . . . 5 ((1o ∈ On ∧ 𝐶 ∈ V) → ({1o} × 𝐶) ≈ 𝐶)
1714, 15, 16sylancr 587 . . . 4 (𝐶𝐷 → ({1o} × 𝐶) ≈ 𝐶)
182brrelex2i 5671 . . . . . . 7 (𝐶𝐷𝐷 ∈ V)
19 xpsnen2g 8983 . . . . . . 7 ((1o ∈ On ∧ 𝐷 ∈ V) → ({1o} × 𝐷) ≈ 𝐷)
2014, 18, 19sylancr 587 . . . . . 6 (𝐶𝐷 → ({1o} × 𝐷) ≈ 𝐷)
2120ensymd 8927 . . . . 5 (𝐶𝐷𝐷 ≈ ({1o} × 𝐷))
22 entr 8928 . . . . 5 ((𝐶𝐷𝐷 ≈ ({1o} × 𝐷)) → 𝐶 ≈ ({1o} × 𝐷))
2321, 22mpdan 687 . . . 4 (𝐶𝐷𝐶 ≈ ({1o} × 𝐷))
24 entr 8928 . . . 4 ((({1o} × 𝐶) ≈ 𝐶𝐶 ≈ ({1o} × 𝐷)) → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
2517, 23, 24syl2anc 584 . . 3 (𝐶𝐷 → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
26 xp01disjl 8407 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
27 xp01disjl 8407 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅
28 unen 8967 . . . 4 (((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
2926, 27, 28mpanr12 705 . . 3 ((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
3013, 25, 29syl2an 596 . 2 ((𝐴𝐵𝐶𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
31 df-dju 9794 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
32 df-dju 9794 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
3330, 31, 323brtr4g 5123 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  cin 3896  c0 4280  {csn 4573   class class class wbr 5089   × cxp 5612  Oncon0 6306  1oc1o 8378  cen 8866  cdju 9791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-en 8870  df-dju 9794
This theorem is referenced by:  djuenun  10062  cardadju  10086  nnadju  10089  ficardadju  10091  pwsdompw  10094  ackbij1lem5  10114  ackbij1lem9  10118  gchhar  10570
  Copyright terms: Public domain W3C validator