MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuen Structured version   Visualization version   GIF version

Theorem djuen 9856
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 0ex 5226 . . . . 5 ∅ ∈ V
2 relen 8696 . . . . . 6 Rel ≈
32brrelex1i 5634 . . . . 5 (𝐴𝐵𝐴 ∈ V)
4 xpsnen2g 8805 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
51, 3, 4sylancr 586 . . . 4 (𝐴𝐵 → ({∅} × 𝐴) ≈ 𝐴)
62brrelex2i 5635 . . . . . . 7 (𝐴𝐵𝐵 ∈ V)
7 xpsnen2g 8805 . . . . . . 7 ((∅ ∈ V ∧ 𝐵 ∈ V) → ({∅} × 𝐵) ≈ 𝐵)
81, 6, 7sylancr 586 . . . . . 6 (𝐴𝐵 → ({∅} × 𝐵) ≈ 𝐵)
98ensymd 8746 . . . . 5 (𝐴𝐵𝐵 ≈ ({∅} × 𝐵))
10 entr 8747 . . . . 5 ((𝐴𝐵𝐵 ≈ ({∅} × 𝐵)) → 𝐴 ≈ ({∅} × 𝐵))
119, 10mpdan 683 . . . 4 (𝐴𝐵𝐴 ≈ ({∅} × 𝐵))
12 entr 8747 . . . 4 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐵)) → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
135, 11, 12syl2anc 583 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
14 1on 8274 . . . . 5 1o ∈ On
152brrelex1i 5634 . . . . 5 (𝐶𝐷𝐶 ∈ V)
16 xpsnen2g 8805 . . . . 5 ((1o ∈ On ∧ 𝐶 ∈ V) → ({1o} × 𝐶) ≈ 𝐶)
1714, 15, 16sylancr 586 . . . 4 (𝐶𝐷 → ({1o} × 𝐶) ≈ 𝐶)
182brrelex2i 5635 . . . . . . 7 (𝐶𝐷𝐷 ∈ V)
19 xpsnen2g 8805 . . . . . . 7 ((1o ∈ On ∧ 𝐷 ∈ V) → ({1o} × 𝐷) ≈ 𝐷)
2014, 18, 19sylancr 586 . . . . . 6 (𝐶𝐷 → ({1o} × 𝐷) ≈ 𝐷)
2120ensymd 8746 . . . . 5 (𝐶𝐷𝐷 ≈ ({1o} × 𝐷))
22 entr 8747 . . . . 5 ((𝐶𝐷𝐷 ≈ ({1o} × 𝐷)) → 𝐶 ≈ ({1o} × 𝐷))
2321, 22mpdan 683 . . . 4 (𝐶𝐷𝐶 ≈ ({1o} × 𝐷))
24 entr 8747 . . . 4 ((({1o} × 𝐶) ≈ 𝐶𝐶 ≈ ({1o} × 𝐷)) → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
2517, 23, 24syl2anc 583 . . 3 (𝐶𝐷 → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
26 xp01disjl 8288 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
27 xp01disjl 8288 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅
28 unen 8790 . . . 4 (((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
2926, 27, 28mpanr12 701 . . 3 ((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
3013, 25, 29syl2an 595 . 2 ((𝐴𝐵𝐶𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
31 df-dju 9590 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
32 df-dju 9590 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
3330, 31, 323brtr4g 5104 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  Oncon0 6251  1oc1o 8260  cen 8688  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dju 9590
This theorem is referenced by:  djuenun  9857  cardadju  9881  nnadju  9884  ficardadju  9886  pwsdompw  9891  ackbij1lem5  9911  ackbij1lem9  9915  gchhar  10366
  Copyright terms: Public domain W3C validator