MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuen Structured version   Visualization version   GIF version

Theorem djuen 10208
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuen ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuen
StepHypRef Expression
1 0ex 5313 . . . . 5 ∅ ∈ V
2 relen 8989 . . . . . 6 Rel ≈
32brrelex1i 5745 . . . . 5 (𝐴𝐵𝐴 ∈ V)
4 xpsnen2g 9104 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
51, 3, 4sylancr 587 . . . 4 (𝐴𝐵 → ({∅} × 𝐴) ≈ 𝐴)
62brrelex2i 5746 . . . . . . 7 (𝐴𝐵𝐵 ∈ V)
7 xpsnen2g 9104 . . . . . . 7 ((∅ ∈ V ∧ 𝐵 ∈ V) → ({∅} × 𝐵) ≈ 𝐵)
81, 6, 7sylancr 587 . . . . . 6 (𝐴𝐵 → ({∅} × 𝐵) ≈ 𝐵)
98ensymd 9044 . . . . 5 (𝐴𝐵𝐵 ≈ ({∅} × 𝐵))
10 entr 9045 . . . . 5 ((𝐴𝐵𝐵 ≈ ({∅} × 𝐵)) → 𝐴 ≈ ({∅} × 𝐵))
119, 10mpdan 687 . . . 4 (𝐴𝐵𝐴 ≈ ({∅} × 𝐵))
12 entr 9045 . . . 4 ((({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐵)) → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
135, 11, 12syl2anc 584 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≈ ({∅} × 𝐵))
14 1on 8517 . . . . 5 1o ∈ On
152brrelex1i 5745 . . . . 5 (𝐶𝐷𝐶 ∈ V)
16 xpsnen2g 9104 . . . . 5 ((1o ∈ On ∧ 𝐶 ∈ V) → ({1o} × 𝐶) ≈ 𝐶)
1714, 15, 16sylancr 587 . . . 4 (𝐶𝐷 → ({1o} × 𝐶) ≈ 𝐶)
182brrelex2i 5746 . . . . . . 7 (𝐶𝐷𝐷 ∈ V)
19 xpsnen2g 9104 . . . . . . 7 ((1o ∈ On ∧ 𝐷 ∈ V) → ({1o} × 𝐷) ≈ 𝐷)
2014, 18, 19sylancr 587 . . . . . 6 (𝐶𝐷 → ({1o} × 𝐷) ≈ 𝐷)
2120ensymd 9044 . . . . 5 (𝐶𝐷𝐷 ≈ ({1o} × 𝐷))
22 entr 9045 . . . . 5 ((𝐶𝐷𝐷 ≈ ({1o} × 𝐷)) → 𝐶 ≈ ({1o} × 𝐷))
2321, 22mpdan 687 . . . 4 (𝐶𝐷𝐶 ≈ ({1o} × 𝐷))
24 entr 9045 . . . 4 ((({1o} × 𝐶) ≈ 𝐶𝐶 ≈ ({1o} × 𝐷)) → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
2517, 23, 24syl2anc 584 . . 3 (𝐶𝐷 → ({1o} × 𝐶) ≈ ({1o} × 𝐷))
26 xp01disjl 8529 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
27 xp01disjl 8529 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅
28 unen 9085 . . . 4 (((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅ ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐷)) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
2926, 27, 28mpanr12 705 . . 3 ((({∅} × 𝐴) ≈ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≈ ({1o} × 𝐷)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
3013, 25, 29syl2an 596 . 2 ((𝐴𝐵𝐶𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≈ (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
31 df-dju 9939 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
32 df-dju 9939 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
3330, 31, 323brtr4g 5182 1 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  cin 3962  c0 4339  {csn 4631   class class class wbr 5148   × cxp 5687  Oncon0 6386  1oc1o 8498  cen 8981  cdju 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1st 8013  df-2nd 8014  df-1o 8505  df-er 8744  df-en 8985  df-dju 9939
This theorem is referenced by:  djuenun  10209  cardadju  10233  nnadju  10236  ficardadju  10238  pwsdompw  10241  ackbij1lem5  10261  ackbij1lem9  10265  gchhar  10717
  Copyright terms: Public domain W3C validator