MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardadju Structured version   Visualization version   GIF version

Theorem ficardadju 10057
Description: The disjoint union of finite sets is equinumerous to the ordinal sum of the cardinalities of those sets. (Contributed by BTernaryTau, 3-Jul-2024.)
Assertion
Ref Expression
ficardadju ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem ficardadju
StepHypRef Expression
1 ficardom 9819 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2 ficardom 9819 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
3 nnadju 10055 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) ⊔ (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
4 df-dju 9759 . . . . . . 7 ((card‘𝐴) ⊔ (card‘𝐵)) = (({∅} × (card‘𝐴)) ∪ ({1o} × (card‘𝐵)))
5 snfi 8910 . . . . . . . . 9 {∅} ∈ Fin
6 nnfi 9033 . . . . . . . . 9 ((card‘𝐴) ∈ ω → (card‘𝐴) ∈ Fin)
7 xpfi 9183 . . . . . . . . 9 (({∅} ∈ Fin ∧ (card‘𝐴) ∈ Fin) → ({∅} × (card‘𝐴)) ∈ Fin)
85, 6, 7sylancr 587 . . . . . . . 8 ((card‘𝐴) ∈ ω → ({∅} × (card‘𝐴)) ∈ Fin)
9 snfi 8910 . . . . . . . . 9 {1o} ∈ Fin
10 nnfi 9033 . . . . . . . . 9 ((card‘𝐵) ∈ ω → (card‘𝐵) ∈ Fin)
11 xpfi 9183 . . . . . . . . 9 (({1o} ∈ Fin ∧ (card‘𝐵) ∈ Fin) → ({1o} × (card‘𝐵)) ∈ Fin)
129, 10, 11sylancr 587 . . . . . . . 8 ((card‘𝐵) ∈ ω → ({1o} × (card‘𝐵)) ∈ Fin)
13 unfi 9038 . . . . . . . 8 ((({∅} × (card‘𝐴)) ∈ Fin ∧ ({1o} × (card‘𝐵)) ∈ Fin) → (({∅} × (card‘𝐴)) ∪ ({1o} × (card‘𝐵))) ∈ Fin)
148, 12, 13syl2an 596 . . . . . . 7 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (({∅} × (card‘𝐴)) ∪ ({1o} × (card‘𝐵))) ∈ Fin)
154, 14eqeltrid 2841 . . . . . 6 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊔ (card‘𝐵)) ∈ Fin)
16 ficardid 9820 . . . . . 6 (((card‘𝐴) ⊔ (card‘𝐵)) ∈ Fin → (card‘((card‘𝐴) ⊔ (card‘𝐵))) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
1715, 16syl 17 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) ⊔ (card‘𝐵))) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
183, 17eqbrtrrd 5117 . . . 4 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
191, 2, 18syl2an 596 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
20 ficardid 9820 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
21 ficardid 9820 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵)
22 djuen 10027 . . . 4 (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵))
2320, 21, 22syl2an 596 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵))
24 entr 8868 . . 3 ((((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)) ∧ ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
2519, 23, 24syl2anc 584 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
2625ensymd 8867 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  cun 3896  c0 4270  {csn 4574   class class class wbr 5093   × cxp 5619  cfv 6480  (class class class)co 7338  ωcom 7781  1oc1o 8361   +o coa 8365  cen 8802  Fincfn 8805  cdju 9756  cardccrd 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-oadd 8372  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-dju 9759  df-card 9797
This theorem is referenced by:  ficardun  10058  ficardun2  10060
  Copyright terms: Public domain W3C validator