MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardadju Structured version   Visualization version   GIF version

Theorem ficardadju 9886
Description: The disjoint union of finite sets is equinumerous to the ordinal sum of the cardinalities of those sets. (Contributed by BTernaryTau, 3-Jul-2024.)
Assertion
Ref Expression
ficardadju ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem ficardadju
StepHypRef Expression
1 ficardom 9650 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2 ficardom 9650 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
3 nnadju 9884 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) ⊔ (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
4 df-dju 9590 . . . . . . 7 ((card‘𝐴) ⊔ (card‘𝐵)) = (({∅} × (card‘𝐴)) ∪ ({1o} × (card‘𝐵)))
5 snfi 8788 . . . . . . . . 9 {∅} ∈ Fin
6 nnfi 8912 . . . . . . . . 9 ((card‘𝐴) ∈ ω → (card‘𝐴) ∈ Fin)
7 xpfi 9015 . . . . . . . . 9 (({∅} ∈ Fin ∧ (card‘𝐴) ∈ Fin) → ({∅} × (card‘𝐴)) ∈ Fin)
85, 6, 7sylancr 586 . . . . . . . 8 ((card‘𝐴) ∈ ω → ({∅} × (card‘𝐴)) ∈ Fin)
9 snfi 8788 . . . . . . . . 9 {1o} ∈ Fin
10 nnfi 8912 . . . . . . . . 9 ((card‘𝐵) ∈ ω → (card‘𝐵) ∈ Fin)
11 xpfi 9015 . . . . . . . . 9 (({1o} ∈ Fin ∧ (card‘𝐵) ∈ Fin) → ({1o} × (card‘𝐵)) ∈ Fin)
129, 10, 11sylancr 586 . . . . . . . 8 ((card‘𝐵) ∈ ω → ({1o} × (card‘𝐵)) ∈ Fin)
13 unfi 8917 . . . . . . . 8 ((({∅} × (card‘𝐴)) ∈ Fin ∧ ({1o} × (card‘𝐵)) ∈ Fin) → (({∅} × (card‘𝐴)) ∪ ({1o} × (card‘𝐵))) ∈ Fin)
148, 12, 13syl2an 595 . . . . . . 7 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (({∅} × (card‘𝐴)) ∪ ({1o} × (card‘𝐵))) ∈ Fin)
154, 14eqeltrid 2843 . . . . . 6 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊔ (card‘𝐵)) ∈ Fin)
16 ficardid 9651 . . . . . 6 (((card‘𝐴) ⊔ (card‘𝐵)) ∈ Fin → (card‘((card‘𝐴) ⊔ (card‘𝐵))) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
1715, 16syl 17 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → (card‘((card‘𝐴) ⊔ (card‘𝐵))) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
183, 17eqbrtrrd 5094 . . . 4 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
191, 2, 18syl2an 595 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
20 ficardid 9651 . . . 4 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
21 ficardid 9651 . . . 4 (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵)
22 djuen 9856 . . . 4 (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵))
2320, 21, 22syl2an 595 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵))
24 entr 8747 . . 3 ((((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)) ∧ ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
2519, 23, 24syl2anc 583 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
2625ensymd 8746 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cun 3881  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260   +o coa 8264  cen 8688  Fincfn 8691  cdju 9587  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628
This theorem is referenced by:  ficardun  9887  ficardun2  9889
  Copyright terms: Public domain W3C validator