MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuxpdom Structured version   Visualization version   GIF version

Theorem djuxpdom 10177
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
djuxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem djuxpdom
StepHypRef Expression
1 df-dju 9893 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0ex 5298 . . . . . . 7 ∅ ∈ V
3 relsdom 8943 . . . . . . . 8 Rel ≺
43brrelex2i 5724 . . . . . . 7 (1o𝐴𝐴 ∈ V)
5 xpsnen2g 9062 . . . . . . 7 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
62, 4, 5sylancr 586 . . . . . 6 (1o𝐴 → ({∅} × 𝐴) ≈ 𝐴)
7 sdomen2 9119 . . . . . 6 (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
86, 7syl 17 . . . . 5 (1o𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
98ibir 268 . . . 4 (1o𝐴 → 1o ≺ ({∅} × 𝐴))
10 1on 8474 . . . . . . 7 1o ∈ On
113brrelex2i 5724 . . . . . . 7 (1o𝐵𝐵 ∈ V)
12 xpsnen2g 9062 . . . . . . 7 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
1310, 11, 12sylancr 586 . . . . . 6 (1o𝐵 → ({1o} × 𝐵) ≈ 𝐵)
14 sdomen2 9119 . . . . . 6 (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1513, 14syl 17 . . . . 5 (1o𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1615ibir 268 . . . 4 (1o𝐵 → 1o ≺ ({1o} × 𝐵))
17 unxpdom 9250 . . . 4 ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
189, 16, 17syl2an 595 . . 3 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
191, 18eqbrtrid 5174 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
20 xpen 9137 . . 3 ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
216, 13, 20syl2an 595 . 2 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
22 domentr 9006 . 2 (((𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
2319, 21, 22syl2anc 583 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  Vcvv 3466  cun 3939  c0 4315  {csn 4621   class class class wbr 5139   × cxp 5665  Oncon0 6355  1oc1o 8455  cen 8933  cdom 8934  csdm 8935  cdju 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1st 7969  df-2nd 7970  df-1o 8462  df-2o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-dju 9893
This theorem is referenced by:  canthp1lem1  10644
  Copyright terms: Public domain W3C validator