MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuxpdom Structured version   Visualization version   GIF version

Theorem djuxpdom 9596
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
djuxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem djuxpdom
StepHypRef Expression
1 df-dju 9314 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0ex 5175 . . . . . . 7 ∅ ∈ V
3 relsdom 8499 . . . . . . . 8 Rel ≺
43brrelex2i 5573 . . . . . . 7 (1o𝐴𝐴 ∈ V)
5 xpsnen2g 8593 . . . . . . 7 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
62, 4, 5sylancr 590 . . . . . 6 (1o𝐴 → ({∅} × 𝐴) ≈ 𝐴)
7 sdomen2 8646 . . . . . 6 (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
86, 7syl 17 . . . . 5 (1o𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
98ibir 271 . . . 4 (1o𝐴 → 1o ≺ ({∅} × 𝐴))
10 1on 8092 . . . . . . 7 1o ∈ On
113brrelex2i 5573 . . . . . . 7 (1o𝐵𝐵 ∈ V)
12 xpsnen2g 8593 . . . . . . 7 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
1310, 11, 12sylancr 590 . . . . . 6 (1o𝐵 → ({1o} × 𝐵) ≈ 𝐵)
14 sdomen2 8646 . . . . . 6 (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1513, 14syl 17 . . . . 5 (1o𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1615ibir 271 . . . 4 (1o𝐵 → 1o ≺ ({1o} × 𝐵))
17 unxpdom 8709 . . . 4 ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
189, 16, 17syl2an 598 . . 3 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
191, 18eqbrtrid 5065 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
20 xpen 8664 . . 3 ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
216, 13, 20syl2an 598 . 2 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
22 domentr 8551 . 2 (((𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
2319, 21, 22syl2anc 587 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  Vcvv 3441  cun 3879  c0 4243  {csn 4525   class class class wbr 5030   × cxp 5517  Oncon0 6159  1oc1o 8078  cen 8489  cdom 8490  csdm 8491  cdju 9311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1st 7671  df-2nd 7672  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-dju 9314
This theorem is referenced by:  canthp1lem1  10063
  Copyright terms: Public domain W3C validator