![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djuxpdom | Structured version Visualization version GIF version |
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
djuxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9893 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | 0ex 5307 | . . . . . . 7 ⊢ ∅ ∈ V | |
3 | relsdom 8943 | . . . . . . . 8 ⊢ Rel ≺ | |
4 | 3 | brrelex2i 5732 | . . . . . . 7 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
5 | xpsnen2g 9062 | . . . . . . 7 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
6 | 2, 4, 5 | sylancr 588 | . . . . . 6 ⊢ (1o ≺ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
7 | sdomen2 9119 | . . . . . 6 ⊢ (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o ≺ 𝐴)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o ≺ 𝐴)) |
9 | 8 | ibir 268 | . . . 4 ⊢ (1o ≺ 𝐴 → 1o ≺ ({∅} × 𝐴)) |
10 | 1on 8475 | . . . . . . 7 ⊢ 1o ∈ On | |
11 | 3 | brrelex2i 5732 | . . . . . . 7 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
12 | xpsnen2g 9062 | . . . . . . 7 ⊢ ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵) | |
13 | 10, 11, 12 | sylancr 588 | . . . . . 6 ⊢ (1o ≺ 𝐵 → ({1o} × 𝐵) ≈ 𝐵) |
14 | sdomen2 9119 | . . . . . 6 ⊢ (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o ≺ 𝐵)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o ≺ 𝐵)) |
16 | 15 | ibir 268 | . . . 4 ⊢ (1o ≺ 𝐵 → 1o ≺ ({1o} × 𝐵)) |
17 | unxpdom 9250 | . . . 4 ⊢ ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) | |
18 | 9, 16, 17 | syl2an 597 | . . 3 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) |
19 | 1, 18 | eqbrtrid 5183 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) |
20 | xpen 9137 | . . 3 ⊢ ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) | |
21 | 6, 13, 20 | syl2an 597 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) |
22 | domentr 9006 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) | |
23 | 19, 21, 22 | syl2anc 585 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 ∪ cun 3946 ∅c0 4322 {csn 4628 class class class wbr 5148 × cxp 5674 Oncon0 6362 1oc1o 8456 ≈ cen 8933 ≼ cdom 8934 ≺ csdm 8935 ⊔ cdju 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-1st 7972 df-2nd 7973 df-1o 8463 df-2o 8464 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-dju 9893 |
This theorem is referenced by: canthp1lem1 10644 |
Copyright terms: Public domain | W3C validator |