MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuxpdom Structured version   Visualization version   GIF version

Theorem djuxpdom 10146
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
djuxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem djuxpdom
StepHypRef Expression
1 df-dju 9861 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0ex 5265 . . . . . . 7 ∅ ∈ V
3 relsdom 8928 . . . . . . . 8 Rel ≺
43brrelex2i 5698 . . . . . . 7 (1o𝐴𝐴 ∈ V)
5 xpsnen2g 9039 . . . . . . 7 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
62, 4, 5sylancr 587 . . . . . 6 (1o𝐴 → ({∅} × 𝐴) ≈ 𝐴)
7 sdomen2 9092 . . . . . 6 (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
86, 7syl 17 . . . . 5 (1o𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
98ibir 268 . . . 4 (1o𝐴 → 1o ≺ ({∅} × 𝐴))
10 1on 8449 . . . . . . 7 1o ∈ On
113brrelex2i 5698 . . . . . . 7 (1o𝐵𝐵 ∈ V)
12 xpsnen2g 9039 . . . . . . 7 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
1310, 11, 12sylancr 587 . . . . . 6 (1o𝐵 → ({1o} × 𝐵) ≈ 𝐵)
14 sdomen2 9092 . . . . . 6 (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1513, 14syl 17 . . . . 5 (1o𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1615ibir 268 . . . 4 (1o𝐵 → 1o ≺ ({1o} × 𝐵))
17 unxpdom 9207 . . . 4 ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
189, 16, 17syl2an 596 . . 3 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
191, 18eqbrtrid 5145 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
20 xpen 9110 . . 3 ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
216, 13, 20syl2an 596 . 2 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
22 domentr 8987 . 2 (((𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
2319, 21, 22syl2anc 584 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3450  cun 3915  c0 4299  {csn 4592   class class class wbr 5110   × cxp 5639  Oncon0 6335  1oc1o 8430  cen 8918  cdom 8919  csdm 8920  cdju 9858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-dju 9861
This theorem is referenced by:  canthp1lem1  10612
  Copyright terms: Public domain W3C validator