| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuxpdom | Structured version Visualization version GIF version | ||
| Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| djuxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9830 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | 0ex 5257 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 3 | relsdom 8902 | . . . . . . . 8 ⊢ Rel ≺ | |
| 4 | 3 | brrelex2i 5688 | . . . . . . 7 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
| 5 | xpsnen2g 9011 | . . . . . . 7 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . 6 ⊢ (1o ≺ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
| 7 | sdomen2 9063 | . . . . . 6 ⊢ (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o ≺ 𝐴)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o ≺ 𝐴)) |
| 9 | 8 | ibir 268 | . . . 4 ⊢ (1o ≺ 𝐴 → 1o ≺ ({∅} × 𝐴)) |
| 10 | 1on 8423 | . . . . . . 7 ⊢ 1o ∈ On | |
| 11 | 3 | brrelex2i 5688 | . . . . . . 7 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
| 12 | xpsnen2g 9011 | . . . . . . 7 ⊢ ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . 6 ⊢ (1o ≺ 𝐵 → ({1o} × 𝐵) ≈ 𝐵) |
| 14 | sdomen2 9063 | . . . . . 6 ⊢ (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o ≺ 𝐵)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o ≺ 𝐵)) |
| 16 | 15 | ibir 268 | . . . 4 ⊢ (1o ≺ 𝐵 → 1o ≺ ({1o} × 𝐵)) |
| 17 | unxpdom 9176 | . . . 4 ⊢ ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) | |
| 18 | 9, 16, 17 | syl2an 596 | . . 3 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) |
| 19 | 1, 18 | eqbrtrid 5137 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) |
| 20 | xpen 9081 | . . 3 ⊢ ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) | |
| 21 | 6, 13, 20 | syl2an 596 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) |
| 22 | domentr 8961 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) | |
| 23 | 19, 21, 22 | syl2anc 584 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ∅c0 4292 {csn 4585 class class class wbr 5102 × cxp 5629 Oncon0 6320 1oc1o 8404 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 ⊔ cdju 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-dju 9830 |
| This theorem is referenced by: canthp1lem1 10581 |
| Copyright terms: Public domain | W3C validator |