| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuxpdom | Structured version Visualization version GIF version | ||
| Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| djuxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9794 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | 0ex 5243 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 3 | relsdom 8876 | . . . . . . . 8 ⊢ Rel ≺ | |
| 4 | 3 | brrelex2i 5671 | . . . . . . 7 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
| 5 | xpsnen2g 8983 | . . . . . . 7 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . 6 ⊢ (1o ≺ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
| 7 | sdomen2 9035 | . . . . . 6 ⊢ (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o ≺ 𝐴)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o ≺ 𝐴)) |
| 9 | 8 | ibir 268 | . . . 4 ⊢ (1o ≺ 𝐴 → 1o ≺ ({∅} × 𝐴)) |
| 10 | 1on 8397 | . . . . . . 7 ⊢ 1o ∈ On | |
| 11 | 3 | brrelex2i 5671 | . . . . . . 7 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
| 12 | xpsnen2g 8983 | . . . . . . 7 ⊢ ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . 6 ⊢ (1o ≺ 𝐵 → ({1o} × 𝐵) ≈ 𝐵) |
| 14 | sdomen2 9035 | . . . . . 6 ⊢ (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o ≺ 𝐵)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (1o ≺ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o ≺ 𝐵)) |
| 16 | 15 | ibir 268 | . . . 4 ⊢ (1o ≺ 𝐵 → 1o ≺ ({1o} × 𝐵)) |
| 17 | unxpdom 9143 | . . . 4 ⊢ ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) | |
| 18 | 9, 16, 17 | syl2an 596 | . . 3 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) |
| 19 | 1, 18 | eqbrtrid 5124 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵))) |
| 20 | xpen 9053 | . . 3 ⊢ ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) | |
| 21 | 6, 13, 20 | syl2an 596 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) |
| 22 | domentr 8935 | . 2 ⊢ (((𝐴 ⊔ 𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) | |
| 23 | 19, 21, 22 | syl2anc 584 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∅c0 4280 {csn 4573 class class class wbr 5089 × cxp 5612 Oncon0 6306 1oc1o 8378 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-dju 9794 |
| This theorem is referenced by: canthp1lem1 10543 |
| Copyright terms: Public domain | W3C validator |