MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuxpdom Structured version   Visualization version   GIF version

Theorem djuxpdom 9603
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
djuxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem djuxpdom
StepHypRef Expression
1 df-dju 9322 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0ex 5202 . . . . . . 7 ∅ ∈ V
3 relsdom 8508 . . . . . . . 8 Rel ≺
43brrelex2i 5602 . . . . . . 7 (1o𝐴𝐴 ∈ V)
5 xpsnen2g 8602 . . . . . . 7 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
62, 4, 5sylancr 589 . . . . . 6 (1o𝐴 → ({∅} × 𝐴) ≈ 𝐴)
7 sdomen2 8654 . . . . . 6 (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
86, 7syl 17 . . . . 5 (1o𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
98ibir 270 . . . 4 (1o𝐴 → 1o ≺ ({∅} × 𝐴))
10 1on 8101 . . . . . . 7 1o ∈ On
113brrelex2i 5602 . . . . . . 7 (1o𝐵𝐵 ∈ V)
12 xpsnen2g 8602 . . . . . . 7 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
1310, 11, 12sylancr 589 . . . . . 6 (1o𝐵 → ({1o} × 𝐵) ≈ 𝐵)
14 sdomen2 8654 . . . . . 6 (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1513, 14syl 17 . . . . 5 (1o𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1615ibir 270 . . . 4 (1o𝐵 → 1o ≺ ({1o} × 𝐵))
17 unxpdom 8717 . . . 4 ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
189, 16, 17syl2an 597 . . 3 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
191, 18eqbrtrid 5092 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
20 xpen 8672 . . 3 ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
216, 13, 20syl2an 597 . 2 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
22 domentr 8560 . 2 (((𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
2319, 21, 22syl2anc 586 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2107  Vcvv 3493  cun 3932  c0 4289  {csn 4559   class class class wbr 5057   × cxp 5546  Oncon0 6184  1oc1o 8087  cen 8498  cdom 8499  csdm 8500  cdju 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7573  df-1st 7681  df-2nd 7682  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-dju 9322
This theorem is referenced by:  canthp1lem1  10066
  Copyright terms: Public domain W3C validator