MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuxpdom Structured version   Visualization version   GIF version

Theorem djuxpdom 9678
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
djuxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem djuxpdom
StepHypRef Expression
1 df-dju 9396 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0ex 5172 . . . . . . 7 ∅ ∈ V
3 relsdom 8555 . . . . . . . 8 Rel ≺
43brrelex2i 5574 . . . . . . 7 (1o𝐴𝐴 ∈ V)
5 xpsnen2g 8652 . . . . . . 7 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
62, 4, 5sylancr 590 . . . . . 6 (1o𝐴 → ({∅} × 𝐴) ≈ 𝐴)
7 sdomen2 8705 . . . . . 6 (({∅} × 𝐴) ≈ 𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
86, 7syl 17 . . . . 5 (1o𝐴 → (1o ≺ ({∅} × 𝐴) ↔ 1o𝐴))
98ibir 271 . . . 4 (1o𝐴 → 1o ≺ ({∅} × 𝐴))
10 1on 8131 . . . . . . 7 1o ∈ On
113brrelex2i 5574 . . . . . . 7 (1o𝐵𝐵 ∈ V)
12 xpsnen2g 8652 . . . . . . 7 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
1310, 11, 12sylancr 590 . . . . . 6 (1o𝐵 → ({1o} × 𝐵) ≈ 𝐵)
14 sdomen2 8705 . . . . . 6 (({1o} × 𝐵) ≈ 𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1513, 14syl 17 . . . . 5 (1o𝐵 → (1o ≺ ({1o} × 𝐵) ↔ 1o𝐵))
1615ibir 271 . . . 4 (1o𝐵 → 1o ≺ ({1o} × 𝐵))
17 unxpdom 8797 . . . 4 ((1o ≺ ({∅} × 𝐴) ∧ 1o ≺ ({1o} × 𝐵)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
189, 16, 17syl2an 599 . . 3 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
191, 18eqbrtrid 5062 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)))
20 xpen 8723 . . 3 ((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
216, 13, 20syl2an 599 . 2 ((1o𝐴 ∧ 1o𝐵) → (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵))
22 domentr 8607 . 2 (((𝐴𝐵) ≼ (({∅} × 𝐴) × ({1o} × 𝐵)) ∧ (({∅} × 𝐴) × ({1o} × 𝐵)) ≈ (𝐴 × 𝐵)) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
2319, 21, 22syl2anc 587 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2113  Vcvv 3397  cun 3839  c0 4209  {csn 4513   class class class wbr 5027   × cxp 5517  Oncon0 6166  1oc1o 8117  cen 8545  cdom 8546  csdm 8547  cdju 9393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-om 7594  df-1st 7707  df-2nd 7708  df-1o 8124  df-2o 8125  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-dju 9396
This theorem is referenced by:  canthp1lem1  10145
  Copyright terms: Public domain W3C validator