MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdjuen Structured version   Visualization version   GIF version

Theorem mapdjuen 10213
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))

Proof of Theorem mapdjuen
StepHypRef Expression
1 df-dju 9934 . . . 4 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
21oveq2i 7437 . . 3 (𝐴m (𝐵𝐶)) = (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
3 snex 5437 . . . . 5 {∅} ∈ V
4 simp2 1134 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpexg 7760 . . . . 5 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
63, 4, 5sylancr 585 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
7 snex 5437 . . . . 5 {1o} ∈ V
8 simp3 1135 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
9 xpexg 7760 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
107, 8, 9sylancr 585 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
11 simp1 1133 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
12 xp01disjl 8521 . . . . 5 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1312a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅)
14 mapunen 9179 . . . 4 (((({∅} × 𝐵) ∈ V ∧ ({1o} × 𝐶) ∈ V ∧ 𝐴𝑉) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
156, 10, 11, 13, 14syl31anc 1370 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
162, 15eqbrtrid 5187 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
17 enrefg 9013 . . . . 5 (𝐴𝑉𝐴𝐴)
1811, 17syl 17 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
19 0ex 5311 . . . . 5 ∅ ∈ V
20 xpsnen2g 9098 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
2119, 4, 20sylancr 585 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
22 mapen 9174 . . . 4 ((𝐴𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
2318, 21, 22syl2anc 582 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
24 1on 8507 . . . . 5 1o ∈ On
25 xpsnen2g 9098 . . . . 5 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
2624, 8, 25sylancr 585 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
27 mapen 9174 . . . 4 ((𝐴𝐴 ∧ ({1o} × 𝐶) ≈ 𝐶) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
2818, 26, 27syl2anc 582 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
29 xpen 9173 . . 3 (((𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵) ∧ (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶)) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3023, 28, 29syl2anc 582 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
31 entr 9035 . 2 (((𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ∧ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶))) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3216, 30, 31syl2anc 582 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3473  cun 3947  cin 3948  c0 4326  {csn 4632   class class class wbr 5152   × cxp 5680  Oncon0 6374  (class class class)co 7426  1oc1o 8488  m cmap 8853  cen 8969  cdju 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-1o 8495  df-er 8733  df-map 8855  df-en 8973  df-dom 8974  df-dju 9934
This theorem is referenced by:  pwdjuen  10214
  Copyright terms: Public domain W3C validator