MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdjuen Structured version   Visualization version   GIF version

Theorem mapdjuen 9867
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))

Proof of Theorem mapdjuen
StepHypRef Expression
1 df-dju 9590 . . . 4 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
21oveq2i 7266 . . 3 (𝐴m (𝐵𝐶)) = (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
3 snex 5349 . . . . 5 {∅} ∈ V
4 simp2 1135 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpexg 7578 . . . . 5 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
63, 4, 5sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
7 snex 5349 . . . . 5 {1o} ∈ V
8 simp3 1136 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
9 xpexg 7578 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
107, 8, 9sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
11 simp1 1134 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
12 xp01disjl 8288 . . . . 5 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1312a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅)
14 mapunen 8882 . . . 4 (((({∅} × 𝐵) ∈ V ∧ ({1o} × 𝐶) ∈ V ∧ 𝐴𝑉) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
156, 10, 11, 13, 14syl31anc 1371 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
162, 15eqbrtrid 5105 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
17 enrefg 8727 . . . . 5 (𝐴𝑉𝐴𝐴)
1811, 17syl 17 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
19 0ex 5226 . . . . 5 ∅ ∈ V
20 xpsnen2g 8805 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
2119, 4, 20sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
22 mapen 8877 . . . 4 ((𝐴𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
2318, 21, 22syl2anc 583 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
24 1on 8274 . . . . 5 1o ∈ On
25 xpsnen2g 8805 . . . . 5 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
2624, 8, 25sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
27 mapen 8877 . . . 4 ((𝐴𝐴 ∧ ({1o} × 𝐶) ≈ 𝐶) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
2818, 26, 27syl2anc 583 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
29 xpen 8876 . . 3 (((𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵) ∧ (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶)) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3023, 28, 29syl2anc 583 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
31 entr 8747 . 2 (((𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ∧ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶))) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3216, 30, 31syl2anc 583 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  Oncon0 6251  (class class class)co 7255  1oc1o 8260  m cmap 8573  cen 8688  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-dju 9590
This theorem is referenced by:  pwdjuen  9868
  Copyright terms: Public domain W3C validator