MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdjuen Structured version   Visualization version   GIF version

Theorem mapdjuen 10177
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))

Proof of Theorem mapdjuen
StepHypRef Expression
1 df-dju 9898 . . . 4 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
21oveq2i 7416 . . 3 (𝐴m (𝐵𝐶)) = (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
3 snex 5424 . . . . 5 {∅} ∈ V
4 simp2 1134 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpexg 7734 . . . . 5 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
63, 4, 5sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
7 snex 5424 . . . . 5 {1o} ∈ V
8 simp3 1135 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
9 xpexg 7734 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
107, 8, 9sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
11 simp1 1133 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
12 xp01disjl 8493 . . . . 5 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1312a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅)
14 mapunen 9148 . . . 4 (((({∅} × 𝐵) ∈ V ∧ ({1o} × 𝐶) ∈ V ∧ 𝐴𝑉) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
156, 10, 11, 13, 14syl31anc 1370 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
162, 15eqbrtrid 5176 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
17 enrefg 8982 . . . . 5 (𝐴𝑉𝐴𝐴)
1811, 17syl 17 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
19 0ex 5300 . . . . 5 ∅ ∈ V
20 xpsnen2g 9067 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
2119, 4, 20sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
22 mapen 9143 . . . 4 ((𝐴𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
2318, 21, 22syl2anc 583 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
24 1on 8479 . . . . 5 1o ∈ On
25 xpsnen2g 9067 . . . . 5 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
2624, 8, 25sylancr 586 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
27 mapen 9143 . . . 4 ((𝐴𝐴 ∧ ({1o} × 𝐶) ≈ 𝐶) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
2818, 26, 27syl2anc 583 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
29 xpen 9142 . . 3 (((𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵) ∧ (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶)) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3023, 28, 29syl2anc 583 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
31 entr 9004 . 2 (((𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ∧ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶))) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3216, 30, 31syl2anc 583 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3468  cun 3941  cin 3942  c0 4317  {csn 4623   class class class wbr 5141   × cxp 5667  Oncon0 6358  (class class class)co 7405  1oc1o 8460  m cmap 8822  cen 8938  cdju 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-dju 9898
This theorem is referenced by:  pwdjuen  10178
  Copyright terms: Public domain W3C validator