MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdjuen Structured version   Visualization version   GIF version

Theorem mapdjuen 10110
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapdjuen ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))

Proof of Theorem mapdjuen
StepHypRef Expression
1 df-dju 9830 . . . 4 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
21oveq2i 7380 . . 3 (𝐴m (𝐵𝐶)) = (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
3 snex 5386 . . . . 5 {∅} ∈ V
4 simp2 1137 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐵𝑊)
5 xpexg 7706 . . . . 5 (({∅} ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ∈ V)
63, 4, 5sylancr 587 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ∈ V)
7 snex 5386 . . . . 5 {1o} ∈ V
8 simp3 1138 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
9 xpexg 7706 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑋) → ({1o} × 𝐶) ∈ V)
107, 8, 9sylancr 587 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ∈ V)
11 simp1 1136 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
12 xp01disjl 8433 . . . . 5 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
1312a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅)
14 mapunen 9087 . . . 4 (((({∅} × 𝐵) ∈ V ∧ ({1o} × 𝐶) ∈ V ∧ 𝐴𝑉) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
156, 10, 11, 13, 14syl31anc 1375 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (({∅} × 𝐵) ∪ ({1o} × 𝐶))) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
162, 15eqbrtrid 5137 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))))
17 enrefg 8932 . . . . 5 (𝐴𝑉𝐴𝐴)
1811, 17syl 17 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝐴)
19 0ex 5257 . . . . 5 ∅ ∈ V
20 xpsnen2g 9011 . . . . 5 ((∅ ∈ V ∧ 𝐵𝑊) → ({∅} × 𝐵) ≈ 𝐵)
2119, 4, 20sylancr 587 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({∅} × 𝐵) ≈ 𝐵)
22 mapen 9082 . . . 4 ((𝐴𝐴 ∧ ({∅} × 𝐵) ≈ 𝐵) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
2318, 21, 22syl2anc 584 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵))
24 1on 8423 . . . . 5 1o ∈ On
25 xpsnen2g 9011 . . . . 5 ((1o ∈ On ∧ 𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
2624, 8, 25sylancr 587 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ({1o} × 𝐶) ≈ 𝐶)
27 mapen 9082 . . . 4 ((𝐴𝐴 ∧ ({1o} × 𝐶) ≈ 𝐶) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
2818, 26, 27syl2anc 584 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶))
29 xpen 9081 . . 3 (((𝐴m ({∅} × 𝐵)) ≈ (𝐴m 𝐵) ∧ (𝐴m ({1o} × 𝐶)) ≈ (𝐴m 𝐶)) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3023, 28, 29syl2anc 584 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
31 entr 8954 . 2 (((𝐴m (𝐵𝐶)) ≈ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ∧ ((𝐴m ({∅} × 𝐵)) × (𝐴m ({1o} × 𝐶))) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶))) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
3216, 30, 31syl2anc 584 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵𝐶)) ≈ ((𝐴m 𝐵) × (𝐴m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  cin 3910  c0 4292  {csn 4585   class class class wbr 5102   × cxp 5629  Oncon0 6320  (class class class)co 7369  1oc1o 8404  m cmap 8776  cen 8892  cdju 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-dju 9830
This theorem is referenced by:  pwdjuen  10111
  Copyright terms: Public domain W3C validator