MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuinf Structured version   Visualization version   GIF version

Theorem djuinf 10258
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuinf (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))

Proof of Theorem djuinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 9009 . . . . 5 Rel ≼
21brrelex2i 5757 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
3 djudoml 10254 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ≼ (𝐴𝐴))
42, 2, 3syl2anc 583 . . 3 (ω ≼ 𝐴𝐴 ≼ (𝐴𝐴))
5 domtr 9067 . . 3 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐴)) → ω ≼ (𝐴𝐴))
64, 5mpdan 686 . 2 (ω ≼ 𝐴 → ω ≼ (𝐴𝐴))
71brrelex2i 5757 . . . 4 (ω ≼ (𝐴𝐴) → (𝐴𝐴) ∈ V)
8 anidm 564 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ 𝐴 ∈ V)
9 djuexb 9978 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐴𝐴) ∈ V)
108, 9bitr3i 277 . . . 4 (𝐴 ∈ V ↔ (𝐴𝐴) ∈ V)
117, 10sylibr 234 . . 3 (ω ≼ (𝐴𝐴) → 𝐴 ∈ V)
12 domeng 9022 . . . . 5 ((𝐴𝐴) ∈ V → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
137, 12syl 17 . . . 4 (ω ≼ (𝐴𝐴) → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
1413ibi 267 . . 3 (ω ≼ (𝐴𝐴) → ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)))
15 indi 4303 . . . . . . 7 (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴)))
16 simpr 484 . . . . . . . . 9 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (𝐴𝐴))
17 df-dju 9970 . . . . . . . . 9 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
1816, 17sseqtrdi 4059 . . . . . . . 8 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)))
19 dfss2 3994 . . . . . . . 8 (𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)) ↔ (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2018, 19sylib 218 . . . . . . 7 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2115, 20eqtr3id 2794 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) = 𝑥)
22 ensym 9063 . . . . . . 7 (ω ≈ 𝑥𝑥 ≈ ω)
2322adantr 480 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ≈ ω)
2421, 23eqbrtrd 5188 . . . . 5 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω)
25 cdainflem 10257 . . . . . 6 (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω))
26 snex 5451 . . . . . . . . . . 11 {∅} ∈ V
27 xpexg 7785 . . . . . . . . . . 11 (({∅} ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ∈ V)
2826, 27mpan 689 . . . . . . . . . 10 (𝐴 ∈ V → ({∅} × 𝐴) ∈ V)
29 inss2 4259 . . . . . . . . . 10 (𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴)
30 ssdomg 9060 . . . . . . . . . 10 (({∅} × 𝐴) ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴)))
3128, 29, 30mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴))
32 0ex 5325 . . . . . . . . . 10 ∅ ∈ V
33 xpsnen2g 9131 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
3432, 33mpan 689 . . . . . . . . 9 (𝐴 ∈ V → ({∅} × 𝐴) ≈ 𝐴)
35 domentr 9073 . . . . . . . . 9 (((𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
3631, 34, 35syl2anc 583 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
37 domen1 9185 . . . . . . . 8 ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
3836, 37syl5ibcom 245 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ω ≼ 𝐴))
39 snex 5451 . . . . . . . . . . 11 {1o} ∈ V
40 xpexg 7785 . . . . . . . . . . 11 (({1o} ∈ V ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ∈ V)
4139, 40mpan 689 . . . . . . . . . 10 (𝐴 ∈ V → ({1o} × 𝐴) ∈ V)
42 inss2 4259 . . . . . . . . . 10 (𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴)
43 ssdomg 9060 . . . . . . . . . 10 (({1o} × 𝐴) ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴)))
4441, 42, 43mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴))
45 1on 8534 . . . . . . . . . 10 1o ∈ On
46 xpsnen2g 9131 . . . . . . . . . 10 ((1o ∈ On ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ≈ 𝐴)
4745, 46mpan 689 . . . . . . . . 9 (𝐴 ∈ V → ({1o} × 𝐴) ≈ 𝐴)
48 domentr 9073 . . . . . . . . 9 (((𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴) ∧ ({1o} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
4944, 47, 48syl2anc 583 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
50 domen1 9185 . . . . . . . 8 ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ((𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
5149, 50syl5ibcom 245 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ω ≼ 𝐴))
5238, 51jaod 858 . . . . . 6 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω) → ω ≼ 𝐴))
5325, 52syl5 34 . . . . 5 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ω ≼ 𝐴))
5424, 53syl5 34 . . . 4 (𝐴 ∈ V → ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5554exlimdv 1932 . . 3 (𝐴 ∈ V → (∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5611, 14, 55sylc 65 . 2 (ω ≼ (𝐴𝐴) → ω ≼ 𝐴)
576, 56impbii 209 1 (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166   × cxp 5698  Oncon0 6395  ωcom 7903  1oc1o 8515  cen 9000  cdom 9001  cdju 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970
This theorem is referenced by:  infdif  10277
  Copyright terms: Public domain W3C validator