MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuinf Structured version   Visualization version   GIF version

Theorem djuinf 10197
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuinf (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))

Proof of Theorem djuinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8959 . . . . 5 Rel ≼
21brrelex2i 5729 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
3 djudoml 10193 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ≼ (𝐴𝐴))
42, 2, 3syl2anc 583 . . 3 (ω ≼ 𝐴𝐴 ≼ (𝐴𝐴))
5 domtr 9017 . . 3 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐴)) → ω ≼ (𝐴𝐴))
64, 5mpdan 686 . 2 (ω ≼ 𝐴 → ω ≼ (𝐴𝐴))
71brrelex2i 5729 . . . 4 (ω ≼ (𝐴𝐴) → (𝐴𝐴) ∈ V)
8 anidm 564 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ 𝐴 ∈ V)
9 djuexb 9918 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐴𝐴) ∈ V)
108, 9bitr3i 277 . . . 4 (𝐴 ∈ V ↔ (𝐴𝐴) ∈ V)
117, 10sylibr 233 . . 3 (ω ≼ (𝐴𝐴) → 𝐴 ∈ V)
12 domeng 8972 . . . . 5 ((𝐴𝐴) ∈ V → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
137, 12syl 17 . . . 4 (ω ≼ (𝐴𝐴) → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
1413ibi 267 . . 3 (ω ≼ (𝐴𝐴) → ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)))
15 indi 4269 . . . . . . 7 (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴)))
16 simpr 484 . . . . . . . . 9 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (𝐴𝐴))
17 df-dju 9910 . . . . . . . . 9 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
1816, 17sseqtrdi 4028 . . . . . . . 8 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)))
19 df-ss 3961 . . . . . . . 8 (𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)) ↔ (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2018, 19sylib 217 . . . . . . 7 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2115, 20eqtr3id 2781 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) = 𝑥)
22 ensym 9013 . . . . . . 7 (ω ≈ 𝑥𝑥 ≈ ω)
2322adantr 480 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ≈ ω)
2421, 23eqbrtrd 5164 . . . . 5 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω)
25 cdainflem 10196 . . . . . 6 (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω))
26 snex 5427 . . . . . . . . . . 11 {∅} ∈ V
27 xpexg 7744 . . . . . . . . . . 11 (({∅} ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ∈ V)
2826, 27mpan 689 . . . . . . . . . 10 (𝐴 ∈ V → ({∅} × 𝐴) ∈ V)
29 inss2 4225 . . . . . . . . . 10 (𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴)
30 ssdomg 9010 . . . . . . . . . 10 (({∅} × 𝐴) ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴)))
3128, 29, 30mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴))
32 0ex 5301 . . . . . . . . . 10 ∅ ∈ V
33 xpsnen2g 9079 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
3432, 33mpan 689 . . . . . . . . 9 (𝐴 ∈ V → ({∅} × 𝐴) ≈ 𝐴)
35 domentr 9023 . . . . . . . . 9 (((𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
3631, 34, 35syl2anc 583 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
37 domen1 9133 . . . . . . . 8 ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
3836, 37syl5ibcom 244 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ω ≼ 𝐴))
39 snex 5427 . . . . . . . . . . 11 {1o} ∈ V
40 xpexg 7744 . . . . . . . . . . 11 (({1o} ∈ V ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ∈ V)
4139, 40mpan 689 . . . . . . . . . 10 (𝐴 ∈ V → ({1o} × 𝐴) ∈ V)
42 inss2 4225 . . . . . . . . . 10 (𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴)
43 ssdomg 9010 . . . . . . . . . 10 (({1o} × 𝐴) ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴)))
4441, 42, 43mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴))
45 1on 8490 . . . . . . . . . 10 1o ∈ On
46 xpsnen2g 9079 . . . . . . . . . 10 ((1o ∈ On ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ≈ 𝐴)
4745, 46mpan 689 . . . . . . . . 9 (𝐴 ∈ V → ({1o} × 𝐴) ≈ 𝐴)
48 domentr 9023 . . . . . . . . 9 (((𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴) ∧ ({1o} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
4944, 47, 48syl2anc 583 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
50 domen1 9133 . . . . . . . 8 ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ((𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
5149, 50syl5ibcom 244 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ω ≼ 𝐴))
5238, 51jaod 858 . . . . . 6 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω) → ω ≼ 𝐴))
5325, 52syl5 34 . . . . 5 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ω ≼ 𝐴))
5424, 53syl5 34 . . . 4 (𝐴 ∈ V → ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5554exlimdv 1929 . . 3 (𝐴 ∈ V → (∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5611, 14, 55sylc 65 . 2 (ω ≼ (𝐴𝐴) → ω ≼ 𝐴)
576, 56impbii 208 1 (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 846   = wceq 1534  wex 1774  wcel 2099  Vcvv 3469  cun 3942  cin 3943  wss 3944  c0 4318  {csn 4624   class class class wbr 5142   × cxp 5670  Oncon0 6363  ωcom 7862  1oc1o 8471  cen 8950  cdom 8951  cdju 9907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9910
This theorem is referenced by:  infdif  10218
  Copyright terms: Public domain W3C validator