MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuinf Structured version   Visualization version   GIF version

Theorem djuinf 10227
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuinf (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))

Proof of Theorem djuinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8990 . . . . 5 Rel ≼
21brrelex2i 5746 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
3 djudoml 10223 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ≼ (𝐴𝐴))
42, 2, 3syl2anc 584 . . 3 (ω ≼ 𝐴𝐴 ≼ (𝐴𝐴))
5 domtr 9046 . . 3 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐴)) → ω ≼ (𝐴𝐴))
64, 5mpdan 687 . 2 (ω ≼ 𝐴 → ω ≼ (𝐴𝐴))
71brrelex2i 5746 . . . 4 (ω ≼ (𝐴𝐴) → (𝐴𝐴) ∈ V)
8 anidm 564 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ 𝐴 ∈ V)
9 djuexb 9947 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐴𝐴) ∈ V)
108, 9bitr3i 277 . . . 4 (𝐴 ∈ V ↔ (𝐴𝐴) ∈ V)
117, 10sylibr 234 . . 3 (ω ≼ (𝐴𝐴) → 𝐴 ∈ V)
12 domeng 9002 . . . . 5 ((𝐴𝐴) ∈ V → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
137, 12syl 17 . . . 4 (ω ≼ (𝐴𝐴) → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
1413ibi 267 . . 3 (ω ≼ (𝐴𝐴) → ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)))
15 indi 4290 . . . . . . 7 (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴)))
16 simpr 484 . . . . . . . . 9 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (𝐴𝐴))
17 df-dju 9939 . . . . . . . . 9 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
1816, 17sseqtrdi 4046 . . . . . . . 8 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)))
19 dfss2 3981 . . . . . . . 8 (𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)) ↔ (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2018, 19sylib 218 . . . . . . 7 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2115, 20eqtr3id 2789 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) = 𝑥)
22 ensym 9042 . . . . . . 7 (ω ≈ 𝑥𝑥 ≈ ω)
2322adantr 480 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ≈ ω)
2421, 23eqbrtrd 5170 . . . . 5 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω)
25 cdainflem 10226 . . . . . 6 (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω))
26 snex 5442 . . . . . . . . . . 11 {∅} ∈ V
27 xpexg 7769 . . . . . . . . . . 11 (({∅} ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ∈ V)
2826, 27mpan 690 . . . . . . . . . 10 (𝐴 ∈ V → ({∅} × 𝐴) ∈ V)
29 inss2 4246 . . . . . . . . . 10 (𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴)
30 ssdomg 9039 . . . . . . . . . 10 (({∅} × 𝐴) ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴)))
3128, 29, 30mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴))
32 0ex 5313 . . . . . . . . . 10 ∅ ∈ V
33 xpsnen2g 9104 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
3432, 33mpan 690 . . . . . . . . 9 (𝐴 ∈ V → ({∅} × 𝐴) ≈ 𝐴)
35 domentr 9052 . . . . . . . . 9 (((𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
3631, 34, 35syl2anc 584 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
37 domen1 9158 . . . . . . . 8 ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
3836, 37syl5ibcom 245 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ω ≼ 𝐴))
39 snex 5442 . . . . . . . . . . 11 {1o} ∈ V
40 xpexg 7769 . . . . . . . . . . 11 (({1o} ∈ V ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ∈ V)
4139, 40mpan 690 . . . . . . . . . 10 (𝐴 ∈ V → ({1o} × 𝐴) ∈ V)
42 inss2 4246 . . . . . . . . . 10 (𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴)
43 ssdomg 9039 . . . . . . . . . 10 (({1o} × 𝐴) ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴)))
4441, 42, 43mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴))
45 1on 8517 . . . . . . . . . 10 1o ∈ On
46 xpsnen2g 9104 . . . . . . . . . 10 ((1o ∈ On ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ≈ 𝐴)
4745, 46mpan 690 . . . . . . . . 9 (𝐴 ∈ V → ({1o} × 𝐴) ≈ 𝐴)
48 domentr 9052 . . . . . . . . 9 (((𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴) ∧ ({1o} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
4944, 47, 48syl2anc 584 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
50 domen1 9158 . . . . . . . 8 ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ((𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
5149, 50syl5ibcom 245 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ω ≼ 𝐴))
5238, 51jaod 859 . . . . . 6 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω) → ω ≼ 𝐴))
5325, 52syl5 34 . . . . 5 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ω ≼ 𝐴))
5424, 53syl5 34 . . . 4 (𝐴 ∈ V → ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5554exlimdv 1931 . . 3 (𝐴 ∈ V → (∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5611, 14, 55sylc 65 . 2 (ω ≼ (𝐴𝐴) → ω ≼ 𝐴)
576, 56impbii 209 1 (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631   class class class wbr 5148   × cxp 5687  Oncon0 6386  ωcom 7887  1oc1o 8498  cen 8981  cdom 8982  cdju 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939
This theorem is referenced by:  infdif  10246
  Copyright terms: Public domain W3C validator