MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuinf Structured version   Visualization version   GIF version

Theorem djuinf 10077
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuinf (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))

Proof of Theorem djuinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8875 . . . . 5 Rel ≼
21brrelex2i 5673 . . . 4 (ω ≼ 𝐴𝐴 ∈ V)
3 djudoml 10073 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ≼ (𝐴𝐴))
42, 2, 3syl2anc 584 . . 3 (ω ≼ 𝐴𝐴 ≼ (𝐴𝐴))
5 domtr 8929 . . 3 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐴)) → ω ≼ (𝐴𝐴))
64, 5mpdan 687 . 2 (ω ≼ 𝐴 → ω ≼ (𝐴𝐴))
71brrelex2i 5673 . . . 4 (ω ≼ (𝐴𝐴) → (𝐴𝐴) ∈ V)
8 anidm 564 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ 𝐴 ∈ V)
9 djuexb 9799 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐴𝐴) ∈ V)
108, 9bitr3i 277 . . . 4 (𝐴 ∈ V ↔ (𝐴𝐴) ∈ V)
117, 10sylibr 234 . . 3 (ω ≼ (𝐴𝐴) → 𝐴 ∈ V)
12 domeng 8885 . . . . 5 ((𝐴𝐴) ∈ V → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
137, 12syl 17 . . . 4 (ω ≼ (𝐴𝐴) → (ω ≼ (𝐴𝐴) ↔ ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴))))
1413ibi 267 . . 3 (ω ≼ (𝐴𝐴) → ∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)))
15 indi 4234 . . . . . . 7 (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴)))
16 simpr 484 . . . . . . . . 9 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (𝐴𝐴))
17 df-dju 9791 . . . . . . . . 9 (𝐴𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴))
1816, 17sseqtrdi 3975 . . . . . . . 8 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)))
19 dfss2 3920 . . . . . . . 8 (𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} × 𝐴)) ↔ (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2018, 19sylib 218 . . . . . . 7 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥)
2115, 20eqtr3id 2780 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) = 𝑥)
22 ensym 8925 . . . . . . 7 (ω ≈ 𝑥𝑥 ≈ ω)
2322adantr 480 . . . . . 6 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → 𝑥 ≈ ω)
2421, 23eqbrtrd 5113 . . . . 5 ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω)
25 cdainflem 10076 . . . . . 6 (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω))
26 snex 5374 . . . . . . . . . . 11 {∅} ∈ V
27 xpexg 7683 . . . . . . . . . . 11 (({∅} ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ∈ V)
2826, 27mpan 690 . . . . . . . . . 10 (𝐴 ∈ V → ({∅} × 𝐴) ∈ V)
29 inss2 4188 . . . . . . . . . 10 (𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴)
30 ssdomg 8922 . . . . . . . . . 10 (({∅} × 𝐴) ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴)))
3128, 29, 30mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴))
32 0ex 5245 . . . . . . . . . 10 ∅ ∈ V
33 xpsnen2g 8983 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
3432, 33mpan 690 . . . . . . . . 9 (𝐴 ∈ V → ({∅} × 𝐴) ≈ 𝐴)
35 domentr 8935 . . . . . . . . 9 (((𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
3631, 34, 35syl2anc 584 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴)
37 domen1 9032 . . . . . . . 8 ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ((𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
3836, 37syl5ibcom 245 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω → ω ≼ 𝐴))
39 snex 5374 . . . . . . . . . . 11 {1o} ∈ V
40 xpexg 7683 . . . . . . . . . . 11 (({1o} ∈ V ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ∈ V)
4139, 40mpan 690 . . . . . . . . . 10 (𝐴 ∈ V → ({1o} × 𝐴) ∈ V)
42 inss2 4188 . . . . . . . . . 10 (𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴)
43 ssdomg 8922 . . . . . . . . . 10 (({1o} × 𝐴) ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o} × 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴)))
4441, 42, 43mpisyl 21 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴))
45 1on 8397 . . . . . . . . . 10 1o ∈ On
46 xpsnen2g 8983 . . . . . . . . . 10 ((1o ∈ On ∧ 𝐴 ∈ V) → ({1o} × 𝐴) ≈ 𝐴)
4745, 46mpan 690 . . . . . . . . 9 (𝐴 ∈ V → ({1o} × 𝐴) ≈ 𝐴)
48 domentr 8935 . . . . . . . . 9 (((𝑥 ∩ ({1o} × 𝐴)) ≼ ({1o} × 𝐴) ∧ ({1o} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
4944, 47, 48syl2anc 584 . . . . . . . 8 (𝐴 ∈ V → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴)
50 domen1 9032 . . . . . . . 8 ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ((𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴))
5149, 50syl5ibcom 245 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ≈ ω → ω ≼ 𝐴))
5238, 51jaod 859 . . . . . 6 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} × 𝐴)) ≈ ω) → ω ≼ 𝐴))
5325, 52syl5 34 . . . . 5 (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω → ω ≼ 𝐴))
5424, 53syl5 34 . . . 4 (𝐴 ∈ V → ((ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5554exlimdv 1934 . . 3 (𝐴 ∈ V → (∃𝑥(ω ≈ 𝑥𝑥 ⊆ (𝐴𝐴)) → ω ≼ 𝐴))
5611, 14, 55sylc 65 . 2 (ω ≼ (𝐴𝐴) → ω ≼ 𝐴)
576, 56impbii 209 1 (ω ≼ 𝐴 ↔ ω ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576   class class class wbr 5091   × cxp 5614  Oncon0 6306  ωcom 7796  1oc1o 8378  cen 8866  cdom 8867  cdju 9788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791
This theorem is referenced by:  infdif  10096
  Copyright terms: Public domain W3C validator