| Step | Hyp | Ref
| Expression |
| 1 | | reldom 8970 |
. . . . 5
⊢ Rel
≼ |
| 2 | 1 | brrelex2i 5716 |
. . . 4
⊢ (ω
≼ 𝐴 → 𝐴 ∈ V) |
| 3 | | djudoml 10204 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
| 4 | 2, 2, 3 | syl2anc 584 |
. . 3
⊢ (ω
≼ 𝐴 → 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
| 5 | | domtr 9026 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ⊔ 𝐴)) → ω ≼ (𝐴 ⊔ 𝐴)) |
| 6 | 4, 5 | mpdan 687 |
. 2
⊢ (ω
≼ 𝐴 → ω
≼ (𝐴 ⊔ 𝐴)) |
| 7 | 1 | brrelex2i 5716 |
. . . 4
⊢ (ω
≼ (𝐴 ⊔ 𝐴) → (𝐴 ⊔ 𝐴) ∈ V) |
| 8 | | anidm 564 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ 𝐴 ∈ V) |
| 9 | | djuexb 9928 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐴 ⊔ 𝐴) ∈ V) |
| 10 | 8, 9 | bitr3i 277 |
. . . 4
⊢ (𝐴 ∈ V ↔ (𝐴 ⊔ 𝐴) ∈ V) |
| 11 | 7, 10 | sylibr 234 |
. . 3
⊢ (ω
≼ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
| 12 | | domeng 8982 |
. . . . 5
⊢ ((𝐴 ⊔ 𝐴) ∈ V → (ω ≼ (𝐴 ⊔ 𝐴) ↔ ∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)))) |
| 13 | 7, 12 | syl 17 |
. . . 4
⊢ (ω
≼ (𝐴 ⊔ 𝐴) → (ω ≼ (𝐴 ⊔ 𝐴) ↔ ∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)))) |
| 14 | 13 | ibi 267 |
. . 3
⊢ (ω
≼ (𝐴 ⊔ 𝐴) → ∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴))) |
| 15 | | indi 4264 |
. . . . . . 7
⊢ (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} ×
𝐴))) = ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) |
| 16 | | simpr 484 |
. . . . . . . . 9
⊢ ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → 𝑥 ⊆ (𝐴 ⊔ 𝐴)) |
| 17 | | df-dju 9920 |
. . . . . . . . 9
⊢ (𝐴 ⊔ 𝐴) = (({∅} × 𝐴) ∪ ({1o} × 𝐴)) |
| 18 | 16, 17 | sseqtrdi 4004 |
. . . . . . . 8
⊢ ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → 𝑥 ⊆ (({∅} × 𝐴) ∪ ({1o} ×
𝐴))) |
| 19 | | dfss2 3949 |
. . . . . . . 8
⊢ (𝑥 ⊆ (({∅} ×
𝐴) ∪ ({1o}
× 𝐴)) ↔ (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} ×
𝐴))) = 𝑥) |
| 20 | 18, 19 | sylib 218 |
. . . . . . 7
⊢ ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → (𝑥 ∩ (({∅} × 𝐴) ∪ ({1o} × 𝐴))) = 𝑥) |
| 21 | 15, 20 | eqtr3id 2785 |
. . . . . 6
⊢ ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) = 𝑥) |
| 22 | | ensym 9022 |
. . . . . . 7
⊢ (ω
≈ 𝑥 → 𝑥 ≈
ω) |
| 23 | 22 | adantr 480 |
. . . . . 6
⊢ ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → 𝑥 ≈ ω) |
| 24 | 21, 23 | eqbrtrd 5146 |
. . . . 5
⊢ ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → ((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈
ω) |
| 25 | | cdainflem 10207 |
. . . . . 6
⊢ (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω →
((𝑥 ∩ ({∅}
× 𝐴)) ≈ ω
∨ (𝑥 ∩
({1o} × 𝐴)) ≈ ω)) |
| 26 | | snex 5411 |
. . . . . . . . . . 11
⊢ {∅}
∈ V |
| 27 | | xpexg 7749 |
. . . . . . . . . . 11
⊢
(({∅} ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ∈ V) |
| 28 | 26, 27 | mpan 690 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → ({∅}
× 𝐴) ∈
V) |
| 29 | | inss2 4218 |
. . . . . . . . . 10
⊢ (𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} ×
𝐴) |
| 30 | | ssdomg 9019 |
. . . . . . . . . 10
⊢
(({∅} × 𝐴) ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ⊆ ({∅} × 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} × 𝐴))) |
| 31 | 28, 29, 30 | mpisyl 21 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} ×
𝐴)) |
| 32 | | 0ex 5282 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 33 | | xpsnen2g 9084 |
. . . . . . . . . 10
⊢ ((∅
∈ V ∧ 𝐴 ∈ V)
→ ({∅} × 𝐴) ≈ 𝐴) |
| 34 | 32, 33 | mpan 690 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → ({∅}
× 𝐴) ≈ 𝐴) |
| 35 | | domentr 9032 |
. . . . . . . . 9
⊢ (((𝑥 ∩ ({∅} × 𝐴)) ≼ ({∅} ×
𝐴) ∧ ({∅} ×
𝐴) ≈ 𝐴) → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴) |
| 36 | 31, 34, 35 | syl2anc 584 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝑥 ∩ ({∅} × 𝐴)) ≼ 𝐴) |
| 37 | | domen1 9138 |
. . . . . . . 8
⊢ ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω →
((𝑥 ∩ ({∅}
× 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴)) |
| 38 | 36, 37 | syl5ibcom 245 |
. . . . . . 7
⊢ (𝐴 ∈ V → ((𝑥 ∩ ({∅} × 𝐴)) ≈ ω →
ω ≼ 𝐴)) |
| 39 | | snex 5411 |
. . . . . . . . . . 11
⊢
{1o} ∈ V |
| 40 | | xpexg 7749 |
. . . . . . . . . . 11
⊢
(({1o} ∈ V ∧ 𝐴 ∈ V) → ({1o} ×
𝐴) ∈
V) |
| 41 | 39, 40 | mpan 690 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V →
({1o} × 𝐴)
∈ V) |
| 42 | | inss2 4218 |
. . . . . . . . . 10
⊢ (𝑥 ∩ ({1o} ×
𝐴)) ⊆
({1o} × 𝐴) |
| 43 | | ssdomg 9019 |
. . . . . . . . . 10
⊢
(({1o} × 𝐴) ∈ V → ((𝑥 ∩ ({1o} × 𝐴)) ⊆ ({1o}
× 𝐴) → (𝑥 ∩ ({1o} ×
𝐴)) ≼
({1o} × 𝐴))) |
| 44 | 41, 42, 43 | mpisyl 21 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝑥 ∩ ({1o} ×
𝐴)) ≼
({1o} × 𝐴)) |
| 45 | | 1on 8497 |
. . . . . . . . . 10
⊢
1o ∈ On |
| 46 | | xpsnen2g 9084 |
. . . . . . . . . 10
⊢
((1o ∈ On ∧ 𝐴 ∈ V) → ({1o} ×
𝐴) ≈ 𝐴) |
| 47 | 45, 46 | mpan 690 |
. . . . . . . . 9
⊢ (𝐴 ∈ V →
({1o} × 𝐴)
≈ 𝐴) |
| 48 | | domentr 9032 |
. . . . . . . . 9
⊢ (((𝑥 ∩ ({1o} ×
𝐴)) ≼
({1o} × 𝐴)
∧ ({1o} × 𝐴) ≈ 𝐴) → (𝑥 ∩ ({1o} × 𝐴)) ≼ 𝐴) |
| 49 | 44, 47, 48 | syl2anc 584 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝑥 ∩ ({1o} ×
𝐴)) ≼ 𝐴) |
| 50 | | domen1 9138 |
. . . . . . . 8
⊢ ((𝑥 ∩ ({1o} ×
𝐴)) ≈ ω →
((𝑥 ∩ ({1o}
× 𝐴)) ≼ 𝐴 ↔ ω ≼ 𝐴)) |
| 51 | 49, 50 | syl5ibcom 245 |
. . . . . . 7
⊢ (𝐴 ∈ V → ((𝑥 ∩ ({1o} ×
𝐴)) ≈ ω →
ω ≼ 𝐴)) |
| 52 | 38, 51 | jaod 859 |
. . . . . 6
⊢ (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ≈ ω ∨ (𝑥 ∩ ({1o} ×
𝐴)) ≈ ω) →
ω ≼ 𝐴)) |
| 53 | 25, 52 | syl5 34 |
. . . . 5
⊢ (𝐴 ∈ V → (((𝑥 ∩ ({∅} × 𝐴)) ∪ (𝑥 ∩ ({1o} × 𝐴))) ≈ ω →
ω ≼ 𝐴)) |
| 54 | 24, 53 | syl5 34 |
. . . 4
⊢ (𝐴 ∈ V → ((ω
≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → ω ≼ 𝐴)) |
| 55 | 54 | exlimdv 1933 |
. . 3
⊢ (𝐴 ∈ V → (∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ (𝐴 ⊔ 𝐴)) → ω ≼ 𝐴)) |
| 56 | 11, 14, 55 | sylc 65 |
. 2
⊢ (ω
≼ (𝐴 ⊔ 𝐴) → ω ≼ 𝐴) |
| 57 | 6, 56 | impbii 209 |
1
⊢ (ω
≼ 𝐴 ↔ ω
≼ (𝐴 ⊔ 𝐴)) |