MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldju2ndl Structured version   Visualization version   GIF version

Theorem eldju2ndl 9938
Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndl ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)

Proof of Theorem eldju2ndl
StepHypRef Expression
1 df-dju 9915 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2826 . . . 4 (𝑋 ∈ (𝐴𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 4128 . . . 4 (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
42, 3bitri 275 . . 3 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
5 elxp6 8022 . . . . 5 (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)))
6 simprr 772 . . . . . 6 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → (2nd𝑋) ∈ 𝐴)
76a1d 25 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
85, 7sylbi 217 . . . 4 (𝑋 ∈ ({∅} × 𝐴) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
9 elxp6 8022 . . . . 5 (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)))
10 elsni 4618 . . . . . . 7 ((1st𝑋) ∈ {1o} → (1st𝑋) = 1o)
11 1n0 8500 . . . . . . . 8 1o ≠ ∅
12 neeq1 2994 . . . . . . . 8 ((1st𝑋) = 1o → ((1st𝑋) ≠ ∅ ↔ 1o ≠ ∅))
1311, 12mpbiri 258 . . . . . . 7 ((1st𝑋) = 1o → (1st𝑋) ≠ ∅)
14 eqneqall 2943 . . . . . . . 8 ((1st𝑋) = ∅ → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐴))
1514com12 32 . . . . . . 7 ((1st𝑋) ≠ ∅ → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
1610, 13, 153syl 18 . . . . . 6 ((1st𝑋) ∈ {1o} → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
1716ad2antrl 728 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
189, 17sylbi 217 . . . 4 (𝑋 ∈ ({1o} × 𝐵) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
198, 18jaoi 857 . . 3 ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
204, 19sylbi 217 . 2 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
2120imp 406 1 ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  cun 3924  c0 4308  {csn 4601  cop 4607   × cxp 5652  cfv 6531  1st c1st 7986  2nd c2nd 7987  1oc1o 8473  cdju 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-suc 6358  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988  df-2nd 7989  df-1o 8480  df-dju 9915
This theorem is referenced by:  updjudhf  9945
  Copyright terms: Public domain W3C validator