MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldju2ndl Structured version   Visualization version   GIF version

Theorem eldju2ndl 9419
Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndl ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)

Proof of Theorem eldju2ndl
StepHypRef Expression
1 df-dju 9396 . . . . 5 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2824 . . . 4 (𝑋 ∈ (𝐴𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 4037 . . . 4 (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
42, 3bitri 278 . . 3 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)))
5 elxp6 7741 . . . . 5 (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)))
6 simprr 773 . . . . . 6 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → (2nd𝑋) ∈ 𝐴)
76a1d 25 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {∅} ∧ (2nd𝑋) ∈ 𝐴)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
85, 7sylbi 220 . . . 4 (𝑋 ∈ ({∅} × 𝐴) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
9 elxp6 7741 . . . . 5 (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)))
10 elsni 4530 . . . . . . 7 ((1st𝑋) ∈ {1o} → (1st𝑋) = 1o)
11 1n0 8143 . . . . . . . 8 1o ≠ ∅
12 neeq1 2996 . . . . . . . 8 ((1st𝑋) = 1o → ((1st𝑋) ≠ ∅ ↔ 1o ≠ ∅))
1311, 12mpbiri 261 . . . . . . 7 ((1st𝑋) = 1o → (1st𝑋) ≠ ∅)
14 eqneqall 2945 . . . . . . . 8 ((1st𝑋) = ∅ → ((1st𝑋) ≠ ∅ → (2nd𝑋) ∈ 𝐴))
1514com12 32 . . . . . . 7 ((1st𝑋) ≠ ∅ → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
1610, 13, 153syl 18 . . . . . 6 ((1st𝑋) ∈ {1o} → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
1716ad2antrl 728 . . . . 5 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ {1o} ∧ (2nd𝑋) ∈ 𝐵)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
189, 17sylbi 220 . . . 4 (𝑋 ∈ ({1o} × 𝐵) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
198, 18jaoi 856 . . 3 ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
204, 19sylbi 220 . 2 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ → (2nd𝑋) ∈ 𝐴))
2120imp 410 1 ((𝑋 ∈ (𝐴𝐵) ∧ (1st𝑋) = ∅) → (2nd𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846   = wceq 1542  wcel 2113  wne 2934  cun 3839  c0 4209  {csn 4513  cop 4519   × cxp 5517  cfv 6333  1st c1st 7705  2nd c2nd 7706  1oc1o 8117  cdju 9393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-suc 6172  df-iota 6291  df-fun 6335  df-fv 6341  df-1st 7707  df-2nd 7708  df-1o 8124  df-dju 9396
This theorem is referenced by:  updjudhf  9426
  Copyright terms: Public domain W3C validator