Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldju2ndr | Structured version Visualization version GIF version |
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju2ndr | ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9590 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | 1 | eleq2i 2830 | . . . 4 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
3 | elun 4079 | . . . 4 ⊢ (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) | |
4 | 2, 3 | bitri 274 | . . 3 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) |
5 | elxp6 7838 | . . . . 5 ⊢ (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴))) | |
6 | elsni 4575 | . . . . . . 7 ⊢ ((1st ‘𝑋) ∈ {∅} → (1st ‘𝑋) = ∅) | |
7 | eqneqall 2953 | . . . . . . 7 ⊢ ((1st ‘𝑋) = ∅ → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ {∅} → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
9 | 8 | ad2antrl 724 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
10 | 5, 9 | sylbi 216 | . . . 4 ⊢ (𝑋 ∈ ({∅} × 𝐴) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
11 | elxp6 7838 | . . . . 5 ⊢ (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵))) | |
12 | simprr 769 | . . . . . 6 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → (2nd ‘𝑋) ∈ 𝐵) | |
13 | 12 | a1d 25 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
14 | 11, 13 | sylbi 216 | . . . 4 ⊢ (𝑋 ∈ ({1o} × 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
15 | 10, 14 | jaoi 853 | . . 3 ⊢ ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
16 | 4, 15 | sylbi 216 | . 2 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
17 | 16 | imp 406 | 1 ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 ∅c0 4253 {csn 4558 〈cop 4564 × cxp 5578 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 1oc1o 8260 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 df-dju 9590 |
This theorem is referenced by: updjudhf 9620 |
Copyright terms: Public domain | W3C validator |