| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldju2ndr | Structured version Visualization version GIF version | ||
| Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| eldju2ndr | ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9830 | . . . . 5 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | 1 | eleq2i 2820 | . . . 4 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ 𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 3 | elun 4112 | . . . 4 ⊢ (𝑋 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) ↔ (𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵))) |
| 5 | elxp6 7981 | . . . . 5 ⊢ (𝑋 ∈ ({∅} × 𝐴) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴))) | |
| 6 | elsni 4602 | . . . . . . 7 ⊢ ((1st ‘𝑋) ∈ {∅} → (1st ‘𝑋) = ∅) | |
| 7 | eqneqall 2936 | . . . . . . 7 ⊢ ((1st ‘𝑋) = ∅ → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((1st ‘𝑋) ∈ {∅} → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
| 9 | 8 | ad2antrl 728 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {∅} ∧ (2nd ‘𝑋) ∈ 𝐴)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
| 10 | 5, 9 | sylbi 217 | . . . 4 ⊢ (𝑋 ∈ ({∅} × 𝐴) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
| 11 | elxp6 7981 | . . . . 5 ⊢ (𝑋 ∈ ({1o} × 𝐵) ↔ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵))) | |
| 12 | simprr 772 | . . . . . 6 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → (2nd ‘𝑋) ∈ 𝐵) | |
| 13 | 12 | a1d 25 | . . . . 5 ⊢ ((𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∧ ((1st ‘𝑋) ∈ {1o} ∧ (2nd ‘𝑋) ∈ 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
| 14 | 11, 13 | sylbi 217 | . . . 4 ⊢ (𝑋 ∈ ({1o} × 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
| 15 | 10, 14 | jaoi 857 | . . 3 ⊢ ((𝑋 ∈ ({∅} × 𝐴) ∨ 𝑋 ∈ ({1o} × 𝐵)) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
| 16 | 4, 15 | sylbi 217 | . 2 ⊢ (𝑋 ∈ (𝐴 ⊔ 𝐵) → ((1st ‘𝑋) ≠ ∅ → (2nd ‘𝑋) ∈ 𝐵)) |
| 17 | 16 | imp 406 | 1 ⊢ ((𝑋 ∈ (𝐴 ⊔ 𝐵) ∧ (1st ‘𝑋) ≠ ∅) → (2nd ‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3909 ∅c0 4292 {csn 4585 〈cop 4591 × cxp 5629 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 1oc1o 8404 ⊔ cdju 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 df-2nd 7948 df-dju 9830 |
| This theorem is referenced by: updjudhf 9860 |
| Copyright terms: Public domain | W3C validator |