| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djufi | Structured version Visualization version GIF version | ||
| Description: The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004.) |
| Ref | Expression |
|---|---|
| djufi | ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ⊔ 𝐵) ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9924 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | 0elon 6419 | . . . . . 6 ⊢ ∅ ∈ On | |
| 3 | relsdom 8975 | . . . . . . 7 ⊢ Rel ≺ | |
| 4 | 3 | brrelex1i 5723 | . . . . . 6 ⊢ (𝐴 ≺ ω → 𝐴 ∈ V) |
| 5 | xpsnen2g 9088 | . . . . . 6 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝐴 ≺ ω → ({∅} × 𝐴) ≈ 𝐴) |
| 7 | sdomen1 9144 | . . . . 5 ⊢ (({∅} × 𝐴) ≈ 𝐴 → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω)) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐴 ≺ ω → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω)) |
| 9 | 8 | ibir 268 | . . 3 ⊢ (𝐴 ≺ ω → ({∅} × 𝐴) ≺ ω) |
| 10 | 1on 8501 | . . . . . 6 ⊢ 1o ∈ On | |
| 11 | 3 | brrelex1i 5723 | . . . . . 6 ⊢ (𝐵 ≺ ω → 𝐵 ∈ V) |
| 12 | xpsnen2g 9088 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . 5 ⊢ (𝐵 ≺ ω → ({1o} × 𝐵) ≈ 𝐵) |
| 14 | sdomen1 9144 | . . . . 5 ⊢ (({1o} × 𝐵) ≈ 𝐵 → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω)) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐵 ≺ ω → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω)) |
| 16 | 15 | ibir 268 | . . 3 ⊢ (𝐵 ≺ ω → ({1o} × 𝐵) ≺ ω) |
| 17 | unfi2 9331 | . . 3 ⊢ ((({∅} × 𝐴) ≺ ω ∧ ({1o} × 𝐵) ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω) | |
| 18 | 9, 16, 17 | syl2an 596 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω) |
| 19 | 1, 18 | eqbrtrid 5160 | 1 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ⊔ 𝐵) ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Vcvv 3464 ∪ cun 3931 ∅c0 4315 {csn 4608 class class class wbr 5125 × cxp 5665 Oncon0 6365 ωcom 7870 1oc1o 8482 ≈ cen 8965 ≺ csdm 8967 ⊔ cdju 9921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-dju 9924 |
| This theorem is referenced by: canthp1lem2 10676 |
| Copyright terms: Public domain | W3C validator |