MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djufi Structured version   Visualization version   GIF version

Theorem djufi 10116
Description: The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
djufi ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)

Proof of Theorem djufi
StepHypRef Expression
1 df-dju 9830 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0elon 6375 . . . . . 6 ∅ ∈ On
3 relsdom 8902 . . . . . . 7 Rel ≺
43brrelex1i 5687 . . . . . 6 (𝐴 ≺ ω → 𝐴 ∈ V)
5 xpsnen2g 9011 . . . . . 6 ((∅ ∈ On ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
62, 4, 5sylancr 587 . . . . 5 (𝐴 ≺ ω → ({∅} × 𝐴) ≈ 𝐴)
7 sdomen1 9062 . . . . 5 (({∅} × 𝐴) ≈ 𝐴 → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω))
86, 7syl 17 . . . 4 (𝐴 ≺ ω → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω))
98ibir 268 . . 3 (𝐴 ≺ ω → ({∅} × 𝐴) ≺ ω)
10 1on 8423 . . . . . 6 1o ∈ On
113brrelex1i 5687 . . . . . 6 (𝐵 ≺ ω → 𝐵 ∈ V)
12 xpsnen2g 9011 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
1310, 11, 12sylancr 587 . . . . 5 (𝐵 ≺ ω → ({1o} × 𝐵) ≈ 𝐵)
14 sdomen1 9062 . . . . 5 (({1o} × 𝐵) ≈ 𝐵 → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω))
1513, 14syl 17 . . . 4 (𝐵 ≺ ω → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω))
1615ibir 268 . . 3 (𝐵 ≺ ω → ({1o} × 𝐵) ≺ ω)
17 unfi2 9235 . . 3 ((({∅} × 𝐴) ≺ ω ∧ ({1o} × 𝐵) ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω)
189, 16, 17syl2an 596 . 2 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω)
191, 18eqbrtrid 5137 1 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3444  cun 3909  c0 4292  {csn 4585   class class class wbr 5102   × cxp 5629  Oncon0 6320  ωcom 7822  1oc1o 8404  cen 8892  csdm 8894  cdju 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830
This theorem is referenced by:  canthp1lem2  10582
  Copyright terms: Public domain W3C validator