MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djufi Structured version   Visualization version   GIF version

Theorem djufi 9646
Description: The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004.)
Assertion
Ref Expression
djufi ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)

Proof of Theorem djufi
StepHypRef Expression
1 df-dju 9363 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0elon 6222 . . . . . 6 ∅ ∈ On
3 relsdom 8534 . . . . . . 7 Rel ≺
43brrelex1i 5577 . . . . . 6 (𝐴 ≺ ω → 𝐴 ∈ V)
5 xpsnen2g 8631 . . . . . 6 ((∅ ∈ On ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
62, 4, 5sylancr 590 . . . . 5 (𝐴 ≺ ω → ({∅} × 𝐴) ≈ 𝐴)
7 sdomen1 8683 . . . . 5 (({∅} × 𝐴) ≈ 𝐴 → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω))
86, 7syl 17 . . . 4 (𝐴 ≺ ω → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω))
98ibir 271 . . 3 (𝐴 ≺ ω → ({∅} × 𝐴) ≺ ω)
10 1on 8119 . . . . . 6 1o ∈ On
113brrelex1i 5577 . . . . . 6 (𝐵 ≺ ω → 𝐵 ∈ V)
12 xpsnen2g 8631 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
1310, 11, 12sylancr 590 . . . . 5 (𝐵 ≺ ω → ({1o} × 𝐵) ≈ 𝐵)
14 sdomen1 8683 . . . . 5 (({1o} × 𝐵) ≈ 𝐵 → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω))
1513, 14syl 17 . . . 4 (𝐵 ≺ ω → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω))
1615ibir 271 . . 3 (𝐵 ≺ ω → ({1o} × 𝐵) ≺ ω)
17 unfi2 8820 . . 3 ((({∅} × 𝐴) ≺ ω ∧ ({1o} × 𝐵) ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω)
189, 16, 17syl2an 598 . 2 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω)
191, 18eqbrtrid 5067 1 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  Vcvv 3409  cun 3856  c0 4225  {csn 4522   class class class wbr 5032   × cxp 5522  Oncon0 6169  ωcom 7579  1oc1o 8105  cen 8524  csdm 8526  cdju 9360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-dju 9363
This theorem is referenced by:  canthp1lem2  10113
  Copyright terms: Public domain W3C validator