Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djufi | Structured version Visualization version GIF version |
Description: The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
djufi | ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ⊔ 𝐵) ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9659 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | 0elon 6319 | . . . . . 6 ⊢ ∅ ∈ On | |
3 | relsdom 8740 | . . . . . . 7 ⊢ Rel ≺ | |
4 | 3 | brrelex1i 5643 | . . . . . 6 ⊢ (𝐴 ≺ ω → 𝐴 ∈ V) |
5 | xpsnen2g 8852 | . . . . . 6 ⊢ ((∅ ∈ On ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
6 | 2, 4, 5 | sylancr 587 | . . . . 5 ⊢ (𝐴 ≺ ω → ({∅} × 𝐴) ≈ 𝐴) |
7 | sdomen1 8908 | . . . . 5 ⊢ (({∅} × 𝐴) ≈ 𝐴 → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω)) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐴 ≺ ω → (({∅} × 𝐴) ≺ ω ↔ 𝐴 ≺ ω)) |
9 | 8 | ibir 267 | . . 3 ⊢ (𝐴 ≺ ω → ({∅} × 𝐴) ≺ ω) |
10 | 1on 8309 | . . . . . 6 ⊢ 1o ∈ On | |
11 | 3 | brrelex1i 5643 | . . . . . 6 ⊢ (𝐵 ≺ ω → 𝐵 ∈ V) |
12 | xpsnen2g 8852 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵) | |
13 | 10, 11, 12 | sylancr 587 | . . . . 5 ⊢ (𝐵 ≺ ω → ({1o} × 𝐵) ≈ 𝐵) |
14 | sdomen1 8908 | . . . . 5 ⊢ (({1o} × 𝐵) ≈ 𝐵 → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω)) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐵 ≺ ω → (({1o} × 𝐵) ≺ ω ↔ 𝐵 ≺ ω)) |
16 | 15 | ibir 267 | . . 3 ⊢ (𝐵 ≺ ω → ({1o} × 𝐵) ≺ ω) |
17 | unfi2 9083 | . . 3 ⊢ ((({∅} × 𝐴) ≺ ω ∧ ({1o} × 𝐵) ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω) | |
18 | 9, 16, 17 | syl2an 596 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≺ ω) |
19 | 1, 18 | eqbrtrid 5109 | 1 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ⊔ 𝐵) ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ∅c0 4256 {csn 4561 class class class wbr 5074 × cxp 5587 Oncon0 6266 ωcom 7712 1oc1o 8290 ≈ cen 8730 ≺ csdm 8732 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 |
This theorem is referenced by: canthp1lem2 10409 |
Copyright terms: Public domain | W3C validator |