MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom1 Structured version   Visualization version   GIF version

Theorem djudom1 9869
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.)
Assertion
Ref Expression
djudom1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))

Proof of Theorem djudom1
StepHypRef Expression
1 snex 5349 . . . 4 {∅} ∈ V
21xpdom2 8807 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵))
3 snex 5349 . . . . 5 {1o} ∈ V
4 xpexg 7578 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑉) → ({1o} × 𝐶) ∈ V)
53, 4mpan 686 . . . 4 (𝐶𝑉 → ({1o} × 𝐶) ∈ V)
6 domrefg 8730 . . . 4 (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
75, 6syl 17 . . 3 (𝐶𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
8 xp01disjl 8288 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
9 undom 8800 . . . 4 (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
108, 9mpan2 687 . . 3 ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
112, 7, 10syl2an 595 . 2 ((𝐴𝐵𝐶𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
12 df-dju 9590 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
13 df-dju 9590 . 2 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
1411, 12, 133brtr4g 5104 1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  1oc1o 8260  cdom 8689  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-en 8692  df-dom 8693  df-dju 9590
This theorem is referenced by:  djudom2  9870  djulepw  9879  unctb  9892  infdif  9896  gchdjuidm  10355  gchpwdom  10357  gchhar  10366  pr2dom  41032  tr3dom  41033
  Copyright terms: Public domain W3C validator