MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom1 Structured version   Visualization version   GIF version

Theorem djudom1 10126
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.)
Assertion
Ref Expression
djudom1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))

Proof of Theorem djudom1
StepHypRef Expression
1 snex 5392 . . . 4 {∅} ∈ V
21xpdom2 9017 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵))
3 snex 5392 . . . . 5 {1o} ∈ V
4 xpexg 7688 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑉) → ({1o} × 𝐶) ∈ V)
53, 4mpan 689 . . . 4 (𝐶𝑉 → ({1o} × 𝐶) ∈ V)
6 domrefg 8933 . . . 4 (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
75, 6syl 17 . . 3 (𝐶𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
8 xp01disjl 8442 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
9 undom 9009 . . . 4 (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
108, 9mpan2 690 . . 3 ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
112, 7, 10syl2an 597 . 2 ((𝐴𝐵𝐶𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
12 df-dju 9845 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
13 df-dju 9845 . 2 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
1411, 12, 133brtr4g 5143 1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3447  cun 3912  cin 3913  c0 4286  {csn 4590   class class class wbr 5109   × cxp 5635  1oc1o 8409  cdom 8887  cdju 9842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-1o 8416  df-en 8890  df-dom 8891  df-dju 9845
This theorem is referenced by:  djudom2  10127  djulepw  10136  unctb  10149  infdif  10153  gchdjuidm  10612  gchpwdom  10614  gchhar  10623  pr2dom  41891  tr3dom  41892
  Copyright terms: Public domain W3C validator