![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djudom1 | Structured version Visualization version GIF version |
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.) |
Ref | Expression |
---|---|
djudom1 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5431 | . . . 4 ⊢ {∅} ∈ V | |
2 | 1 | xpdom2 9066 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵)) |
3 | snex 5431 | . . . . 5 ⊢ {1o} ∈ V | |
4 | xpexg 7736 | . . . . 5 ⊢ (({1o} ∈ V ∧ 𝐶 ∈ 𝑉) → ({1o} × 𝐶) ∈ V) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ∈ V) |
6 | domrefg 8982 | . . . 4 ⊢ (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) |
8 | xp01disjl 8491 | . . . 4 ⊢ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅ | |
9 | undom 9058 | . . . 4 ⊢ (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) | |
10 | 8, 9 | mpan2 689 | . . 3 ⊢ ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
11 | 2, 7, 10 | syl2an 596 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
12 | df-dju 9895 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
13 | df-dju 9895 | . 2 ⊢ (𝐵 ⊔ 𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶)) | |
14 | 11, 12, 13 | 3brtr4g 5182 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 {csn 4628 class class class wbr 5148 × cxp 5674 1oc1o 8458 ≼ cdom 8936 ⊔ cdju 9892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8465 df-en 8939 df-dom 8940 df-dju 9895 |
This theorem is referenced by: djudom2 10177 djulepw 10186 unctb 10199 infdif 10203 gchdjuidm 10662 gchpwdom 10664 gchhar 10673 pr2dom 42268 tr3dom 42269 |
Copyright terms: Public domain | W3C validator |