MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom1 Structured version   Visualization version   GIF version

Theorem djudom1 10223
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.)
Assertion
Ref Expression
djudom1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))

Proof of Theorem djudom1
StepHypRef Expression
1 snex 5436 . . . 4 {∅} ∈ V
21xpdom2 9107 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵))
3 snex 5436 . . . . 5 {1o} ∈ V
4 xpexg 7770 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑉) → ({1o} × 𝐶) ∈ V)
53, 4mpan 690 . . . 4 (𝐶𝑉 → ({1o} × 𝐶) ∈ V)
6 domrefg 9027 . . . 4 (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
75, 6syl 17 . . 3 (𝐶𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
8 xp01disjl 8530 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
9 undom 9099 . . . 4 (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
108, 9mpan2 691 . . 3 ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
112, 7, 10syl2an 596 . 2 ((𝐴𝐵𝐶𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
12 df-dju 9941 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
13 df-dju 9941 . 2 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
1411, 12, 133brtr4g 5177 1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  cin 3950  c0 4333  {csn 4626   class class class wbr 5143   × cxp 5683  1oc1o 8499  cdom 8983  cdju 9938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-1o 8506  df-en 8986  df-dom 8987  df-dju 9941
This theorem is referenced by:  djudom2  10224  djulepw  10233  unctb  10244  infdif  10248  gchdjuidm  10708  gchpwdom  10710  gchhar  10719  pr2dom  43540  tr3dom  43541
  Copyright terms: Public domain W3C validator