MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom1 Structured version   Visualization version   GIF version

Theorem djudom1 9938
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.)
Assertion
Ref Expression
djudom1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))

Proof of Theorem djudom1
StepHypRef Expression
1 snex 5354 . . . 4 {∅} ∈ V
21xpdom2 8854 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵))
3 snex 5354 . . . . 5 {1o} ∈ V
4 xpexg 7600 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑉) → ({1o} × 𝐶) ∈ V)
53, 4mpan 687 . . . 4 (𝐶𝑉 → ({1o} × 𝐶) ∈ V)
6 domrefg 8775 . . . 4 (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
75, 6syl 17 . . 3 (𝐶𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
8 xp01disjl 8322 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
9 undom 8846 . . . 4 (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
108, 9mpan2 688 . . 3 ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
112, 7, 10syl2an 596 . 2 ((𝐴𝐵𝐶𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
12 df-dju 9659 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
13 df-dju 9659 . 2 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
1411, 12, 133brtr4g 5108 1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  c0 4256  {csn 4561   class class class wbr 5074   × cxp 5587  1oc1o 8290  cdom 8731  cdju 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-en 8734  df-dom 8735  df-dju 9659
This theorem is referenced by:  djudom2  9939  djulepw  9948  unctb  9961  infdif  9965  gchdjuidm  10424  gchpwdom  10426  gchhar  10435  pr2dom  41134  tr3dom  41135
  Copyright terms: Public domain W3C validator