Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djudom1 | Structured version Visualization version GIF version |
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.) |
Ref | Expression |
---|---|
djudom1 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5349 | . . . 4 ⊢ {∅} ∈ V | |
2 | 1 | xpdom2 8807 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵)) |
3 | snex 5349 | . . . . 5 ⊢ {1o} ∈ V | |
4 | xpexg 7578 | . . . . 5 ⊢ (({1o} ∈ V ∧ 𝐶 ∈ 𝑉) → ({1o} × 𝐶) ∈ V) | |
5 | 3, 4 | mpan 686 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ∈ V) |
6 | domrefg 8730 | . . . 4 ⊢ (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) |
8 | xp01disjl 8288 | . . . 4 ⊢ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅ | |
9 | undom 8800 | . . . 4 ⊢ (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) | |
10 | 8, 9 | mpan2 687 | . . 3 ⊢ ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
11 | 2, 7, 10 | syl2an 595 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
12 | df-dju 9590 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
13 | df-dju 9590 | . 2 ⊢ (𝐵 ⊔ 𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶)) | |
14 | 11, 12, 13 | 3brtr4g 5104 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 class class class wbr 5070 × cxp 5578 1oc1o 8260 ≼ cdom 8689 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1o 8267 df-en 8692 df-dom 8693 df-dju 9590 |
This theorem is referenced by: djudom2 9870 djulepw 9879 unctb 9892 infdif 9896 gchdjuidm 10355 gchpwdom 10357 gchhar 10366 pr2dom 41032 tr3dom 41033 |
Copyright terms: Public domain | W3C validator |