MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom1 Structured version   Visualization version   GIF version

Theorem djudom1 10074
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.)
Assertion
Ref Expression
djudom1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))

Proof of Theorem djudom1
StepHypRef Expression
1 snex 5372 . . . 4 {∅} ∈ V
21xpdom2 8985 . . 3 (𝐴𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵))
3 snex 5372 . . . . 5 {1o} ∈ V
4 xpexg 7683 . . . . 5 (({1o} ∈ V ∧ 𝐶𝑉) → ({1o} × 𝐶) ∈ V)
53, 4mpan 690 . . . 4 (𝐶𝑉 → ({1o} × 𝐶) ∈ V)
6 domrefg 8909 . . . 4 (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
75, 6syl 17 . . 3 (𝐶𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶))
8 xp01disjl 8407 . . . 4 (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅
9 undom 8978 . . . 4 (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
108, 9mpan2 691 . . 3 ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
112, 7, 10syl2an 596 . 2 ((𝐴𝐵𝐶𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶)))
12 df-dju 9794 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
13 df-dju 9794 . 2 (𝐵𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶))
1411, 12, 133brtr4g 5123 1 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  cin 3896  c0 4280  {csn 4573   class class class wbr 5089   × cxp 5612  1oc1o 8378  cdom 8867  cdju 9791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1o 8385  df-en 8870  df-dom 8871  df-dju 9794
This theorem is referenced by:  djudom2  10075  djulepw  10084  unctb  10095  infdif  10099  gchdjuidm  10559  gchpwdom  10561  gchhar  10570  pr2dom  43630  tr3dom  43631
  Copyright terms: Public domain W3C validator