| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djudom1 | Structured version Visualization version GIF version | ||
| Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.) |
| Ref | Expression |
|---|---|
| djudom1 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5406 | . . . 4 ⊢ {∅} ∈ V | |
| 2 | 1 | xpdom2 9081 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵)) |
| 3 | snex 5406 | . . . . 5 ⊢ {1o} ∈ V | |
| 4 | xpexg 7744 | . . . . 5 ⊢ (({1o} ∈ V ∧ 𝐶 ∈ 𝑉) → ({1o} × 𝐶) ∈ V) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ∈ V) |
| 6 | domrefg 9001 | . . . 4 ⊢ (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) |
| 8 | xp01disjl 8504 | . . . 4 ⊢ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅ | |
| 9 | undom 9073 | . . . 4 ⊢ (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) | |
| 10 | 8, 9 | mpan2 691 | . . 3 ⊢ ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
| 11 | 2, 7, 10 | syl2an 596 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
| 12 | df-dju 9915 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
| 13 | df-dju 9915 | . 2 ⊢ (𝐵 ⊔ 𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶)) | |
| 14 | 11, 12, 13 | 3brtr4g 5153 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 {csn 4601 class class class wbr 5119 × cxp 5652 1oc1o 8473 ≼ cdom 8957 ⊔ cdju 9912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1o 8480 df-en 8960 df-dom 8961 df-dju 9915 |
| This theorem is referenced by: djudom2 10198 djulepw 10207 unctb 10218 infdif 10222 gchdjuidm 10682 gchpwdom 10684 gchhar 10693 pr2dom 43551 tr3dom 43552 |
| Copyright terms: Public domain | W3C validator |