![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djudom1 | Structured version Visualization version GIF version |
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.) |
Ref | Expression |
---|---|
djudom1 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5392 | . . . 4 ⊢ {∅} ∈ V | |
2 | 1 | xpdom2 9017 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵)) |
3 | snex 5392 | . . . . 5 ⊢ {1o} ∈ V | |
4 | xpexg 7688 | . . . . 5 ⊢ (({1o} ∈ V ∧ 𝐶 ∈ 𝑉) → ({1o} × 𝐶) ∈ V) | |
5 | 3, 4 | mpan 689 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ∈ V) |
6 | domrefg 8933 | . . . 4 ⊢ (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) |
8 | xp01disjl 8442 | . . . 4 ⊢ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅ | |
9 | undom 9009 | . . . 4 ⊢ (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) | |
10 | 8, 9 | mpan2 690 | . . 3 ⊢ ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
11 | 2, 7, 10 | syl2an 597 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
12 | df-dju 9845 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
13 | df-dju 9845 | . 2 ⊢ (𝐵 ⊔ 𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶)) | |
14 | 11, 12, 13 | 3brtr4g 5143 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 ∅c0 4286 {csn 4590 class class class wbr 5109 × cxp 5635 1oc1o 8409 ≼ cdom 8887 ⊔ cdju 9842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-1o 8416 df-en 8890 df-dom 8891 df-dju 9845 |
This theorem is referenced by: djudom2 10127 djulepw 10136 unctb 10149 infdif 10153 gchdjuidm 10612 gchpwdom 10614 gchhar 10623 pr2dom 41891 tr3dom 41892 |
Copyright terms: Public domain | W3C validator |