| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djudom1 | Structured version Visualization version GIF version | ||
| Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.) |
| Ref | Expression |
|---|---|
| djudom1 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5372 | . . . 4 ⊢ {∅} ∈ V | |
| 2 | 1 | xpdom2 8985 | . . 3 ⊢ (𝐴 ≼ 𝐵 → ({∅} × 𝐴) ≼ ({∅} × 𝐵)) |
| 3 | snex 5372 | . . . . 5 ⊢ {1o} ∈ V | |
| 4 | xpexg 7683 | . . . . 5 ⊢ (({1o} ∈ V ∧ 𝐶 ∈ 𝑉) → ({1o} × 𝐶) ∈ V) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ∈ V) |
| 6 | domrefg 8909 | . . . 4 ⊢ (({1o} × 𝐶) ∈ V → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ({1o} × 𝐶) ≼ ({1o} × 𝐶)) |
| 8 | xp01disjl 8407 | . . . 4 ⊢ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅ | |
| 9 | undom 8978 | . . . 4 ⊢ (((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) ∧ (({∅} × 𝐵) ∩ ({1o} × 𝐶)) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) | |
| 10 | 8, 9 | mpan2 691 | . . 3 ⊢ ((({∅} × 𝐴) ≼ ({∅} × 𝐵) ∧ ({1o} × 𝐶) ≼ ({1o} × 𝐶)) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
| 11 | 2, 7, 10 | syl2an 596 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) ≼ (({∅} × 𝐵) ∪ ({1o} × 𝐶))) |
| 12 | df-dju 9794 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
| 13 | df-dju 9794 | . 2 ⊢ (𝐵 ⊔ 𝐶) = (({∅} × 𝐵) ∪ ({1o} × 𝐶)) | |
| 14 | 11, 12, 13 | 3brtr4g 5123 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 class class class wbr 5089 × cxp 5612 1oc1o 8378 ≼ cdom 8867 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1o 8385 df-en 8870 df-dom 8871 df-dju 9794 |
| This theorem is referenced by: djudom2 10075 djulepw 10084 unctb 10095 infdif 10099 gchdjuidm 10559 gchpwdom 10561 gchhar 10570 pr2dom 43630 tr3dom 43631 |
| Copyright terms: Public domain | W3C validator |