MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjudom Structured version   Visualization version   GIF version

Theorem pwdjudom 10213
Description: A property of dominance over a powerset, and a main lemma for gchac 10678. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjudom (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)

Proof of Theorem pwdjudom
StepHypRef Expression
1 canthwdom 9576 . . . 4 ¬ 𝒫 𝐴* 𝐴
2 0ex 5306 . . . . . 6 ∅ ∈ V
3 reldom 8947 . . . . . . . . 9 Rel ≼
43brrelex2i 5732 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴𝐵) ∈ V)
5 djuexb 9906 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
64, 5sylibr 233 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76simpld 493 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐴 ∈ V)
8 xpsnen2g 9067 . . . . . 6 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
92, 7, 8sylancr 585 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({∅} × 𝐴) ≈ 𝐴)
10 endom 8977 . . . . 5 (({∅} × 𝐴) ≈ 𝐴 → ({∅} × 𝐴) ≼ 𝐴)
11 domwdom 9571 . . . . 5 (({∅} × 𝐴) ≼ 𝐴 → ({∅} × 𝐴) ≼* 𝐴)
12 wdomtr 9572 . . . . . 6 ((𝒫 𝐴* ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≼* 𝐴) → 𝒫 𝐴* 𝐴)
1312expcom 412 . . . . 5 (({∅} × 𝐴) ≼* 𝐴 → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
149, 10, 11, 134syl 19 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
151, 14mtoi 198 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ¬ 𝒫 𝐴* ({∅} × 𝐴))
16 pwdjuen 10178 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
177, 7, 16syl2anc 582 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
18 domen1 9121 . . . . . . . 8 (𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
1917, 18syl 17 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
2019ibi 266 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵))
21 df-dju 9898 . . . . . 6 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2220, 21breqtrdi 5188 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 unxpwdom 9586 . . . . 5 ((𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2422, 23syl 17 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2524ord 860 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (¬ 𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2615, 25mpd 15 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴 ≼ ({1o} × 𝐵))
27 1on 8480 . . 3 1o ∈ On
286simprd 494 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐵 ∈ V)
29 xpsnen2g 9067 . . 3 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
3027, 28, 29sylancr 585 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({1o} × 𝐵) ≈ 𝐵)
31 domentr 9011 . 2 ((𝒫 𝐴 ≼ ({1o} × 𝐵) ∧ ({1o} × 𝐵) ≈ 𝐵) → 𝒫 𝐴𝐵)
3226, 30, 31syl2anc 582 1 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  wcel 2104  Vcvv 3472  cun 3945  c0 4321  𝒫 cpw 4601  {csn 4627   class class class wbr 5147   × cxp 5673  Oncon0 6363  1oc1o 8461  cen 8938  cdom 8939  * cwdom 9561  cdju 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-wdom 9562  df-dju 9898
This theorem is referenced by:  gchdomtri  10626  gchpwdom  10667  gchhar  10676
  Copyright terms: Public domain W3C validator