MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjudom Structured version   Visualization version   GIF version

Theorem pwdjudom 10225
Description: A property of dominance over a powerset, and a main lemma for gchac 10690. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjudom (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)

Proof of Theorem pwdjudom
StepHypRef Expression
1 canthwdom 9588 . . . 4 ¬ 𝒫 𝐴* 𝐴
2 0ex 5301 . . . . . 6 ∅ ∈ V
3 reldom 8959 . . . . . . . . 9 Rel ≼
43brrelex2i 5729 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴𝐵) ∈ V)
5 djuexb 9918 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
64, 5sylibr 233 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76simpld 494 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐴 ∈ V)
8 xpsnen2g 9079 . . . . . 6 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
92, 7, 8sylancr 586 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({∅} × 𝐴) ≈ 𝐴)
10 endom 8989 . . . . 5 (({∅} × 𝐴) ≈ 𝐴 → ({∅} × 𝐴) ≼ 𝐴)
11 domwdom 9583 . . . . 5 (({∅} × 𝐴) ≼ 𝐴 → ({∅} × 𝐴) ≼* 𝐴)
12 wdomtr 9584 . . . . . 6 ((𝒫 𝐴* ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≼* 𝐴) → 𝒫 𝐴* 𝐴)
1312expcom 413 . . . . 5 (({∅} × 𝐴) ≼* 𝐴 → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
149, 10, 11, 134syl 19 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
151, 14mtoi 198 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ¬ 𝒫 𝐴* ({∅} × 𝐴))
16 pwdjuen 10190 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
177, 7, 16syl2anc 583 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
18 domen1 9133 . . . . . . . 8 (𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
1917, 18syl 17 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
2019ibi 267 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵))
21 df-dju 9910 . . . . . 6 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2220, 21breqtrdi 5183 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 unxpwdom 9598 . . . . 5 ((𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2422, 23syl 17 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2524ord 863 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (¬ 𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2615, 25mpd 15 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴 ≼ ({1o} × 𝐵))
27 1on 8490 . . 3 1o ∈ On
286simprd 495 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐵 ∈ V)
29 xpsnen2g 9079 . . 3 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
3027, 28, 29sylancr 586 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({1o} × 𝐵) ≈ 𝐵)
31 domentr 9023 . 2 ((𝒫 𝐴 ≼ ({1o} × 𝐵) ∧ ({1o} × 𝐵) ≈ 𝐵) → 𝒫 𝐴𝐵)
3226, 30, 31syl2anc 583 1 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  wcel 2099  Vcvv 3469  cun 3942  c0 4318  𝒫 cpw 4598  {csn 4624   class class class wbr 5142   × cxp 5670  Oncon0 6363  1oc1o 8471  cen 8950  cdom 8951  * cwdom 9573  cdju 9907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-1o 8478  df-2o 8479  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-wdom 9574  df-dju 9910
This theorem is referenced by:  gchdomtri  10638  gchpwdom  10679  gchhar  10688
  Copyright terms: Public domain W3C validator