MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjudom Structured version   Visualization version   GIF version

Theorem pwdjudom 10175
Description: A property of dominance over a powerset, and a main lemma for gchac 10641. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjudom (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)

Proof of Theorem pwdjudom
StepHypRef Expression
1 canthwdom 9539 . . . 4 ¬ 𝒫 𝐴* 𝐴
2 0ex 5265 . . . . . 6 ∅ ∈ V
3 reldom 8927 . . . . . . . . 9 Rel ≼
43brrelex2i 5698 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴𝐵) ∈ V)
5 djuexb 9869 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
64, 5sylibr 234 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76simpld 494 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐴 ∈ V)
8 xpsnen2g 9039 . . . . . 6 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
92, 7, 8sylancr 587 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({∅} × 𝐴) ≈ 𝐴)
10 endom 8953 . . . . 5 (({∅} × 𝐴) ≈ 𝐴 → ({∅} × 𝐴) ≼ 𝐴)
11 domwdom 9534 . . . . 5 (({∅} × 𝐴) ≼ 𝐴 → ({∅} × 𝐴) ≼* 𝐴)
12 wdomtr 9535 . . . . . 6 ((𝒫 𝐴* ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≼* 𝐴) → 𝒫 𝐴* 𝐴)
1312expcom 413 . . . . 5 (({∅} × 𝐴) ≼* 𝐴 → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
149, 10, 11, 134syl 19 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
151, 14mtoi 199 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ¬ 𝒫 𝐴* ({∅} × 𝐴))
16 pwdjuen 10142 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
177, 7, 16syl2anc 584 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
18 domen1 9089 . . . . . . . 8 (𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
1917, 18syl 17 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
2019ibi 267 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵))
21 df-dju 9861 . . . . . 6 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2220, 21breqtrdi 5151 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 unxpwdom 9549 . . . . 5 ((𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2422, 23syl 17 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2524ord 864 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (¬ 𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2615, 25mpd 15 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴 ≼ ({1o} × 𝐵))
27 1on 8449 . . 3 1o ∈ On
286simprd 495 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐵 ∈ V)
29 xpsnen2g 9039 . . 3 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
3027, 28, 29sylancr 587 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({1o} × 𝐵) ≈ 𝐵)
31 domentr 8987 . 2 ((𝒫 𝐴 ≼ ({1o} × 𝐵) ∧ ({1o} × 𝐵) ≈ 𝐵) → 𝒫 𝐴𝐵)
3226, 30, 31syl2anc 584 1 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2109  Vcvv 3450  cun 3915  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110   × cxp 5639  Oncon0 6335  1oc1o 8430  cen 8918  cdom 8919  * cwdom 9524  cdju 9858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-wdom 9525  df-dju 9861
This theorem is referenced by:  gchdomtri  10589  gchpwdom  10630  gchhar  10639
  Copyright terms: Public domain W3C validator