MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjudom Structured version   Visualization version   GIF version

Theorem pwdjudom 10109
Description: A property of dominance over a powerset, and a main lemma for gchac 10575. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjudom (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)

Proof of Theorem pwdjudom
StepHypRef Expression
1 canthwdom 9471 . . . 4 ¬ 𝒫 𝐴* 𝐴
2 0ex 5246 . . . . . 6 ∅ ∈ V
3 reldom 8878 . . . . . . . . 9 Rel ≼
43brrelex2i 5676 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴𝐵) ∈ V)
5 djuexb 9805 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
64, 5sylibr 234 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76simpld 494 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐴 ∈ V)
8 xpsnen2g 8987 . . . . . 6 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
92, 7, 8sylancr 587 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({∅} × 𝐴) ≈ 𝐴)
10 endom 8904 . . . . 5 (({∅} × 𝐴) ≈ 𝐴 → ({∅} × 𝐴) ≼ 𝐴)
11 domwdom 9466 . . . . 5 (({∅} × 𝐴) ≼ 𝐴 → ({∅} × 𝐴) ≼* 𝐴)
12 wdomtr 9467 . . . . . 6 ((𝒫 𝐴* ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≼* 𝐴) → 𝒫 𝐴* 𝐴)
1312expcom 413 . . . . 5 (({∅} × 𝐴) ≼* 𝐴 → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
149, 10, 11, 134syl 19 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
151, 14mtoi 199 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ¬ 𝒫 𝐴* ({∅} × 𝐴))
16 pwdjuen 10076 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
177, 7, 16syl2anc 584 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
18 domen1 9036 . . . . . . . 8 (𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
1917, 18syl 17 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
2019ibi 267 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵))
21 df-dju 9797 . . . . . 6 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2220, 21breqtrdi 5133 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 unxpwdom 9481 . . . . 5 ((𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2422, 23syl 17 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2524ord 864 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (¬ 𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2615, 25mpd 15 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴 ≼ ({1o} × 𝐵))
27 1on 8400 . . 3 1o ∈ On
286simprd 495 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐵 ∈ V)
29 xpsnen2g 8987 . . 3 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
3027, 28, 29sylancr 587 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({1o} × 𝐵) ≈ 𝐵)
31 domentr 8938 . 2 ((𝒫 𝐴 ≼ ({1o} × 𝐵) ∧ ({1o} × 𝐵) ≈ 𝐵) → 𝒫 𝐴𝐵)
3226, 30, 31syl2anc 584 1 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2109  Vcvv 3436  cun 3901  c0 4284  𝒫 cpw 4551  {csn 4577   class class class wbr 5092   × cxp 5617  Oncon0 6307  1oc1o 8381  cen 8869  cdom 8870  * cwdom 9456  cdju 9794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-wdom 9457  df-dju 9797
This theorem is referenced by:  gchdomtri  10523  gchpwdom  10564  gchhar  10573
  Copyright terms: Public domain W3C validator