MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjudom Structured version   Visualization version   GIF version

Theorem pwdjudom 9719
Description: A property of dominance over a powerset, and a main lemma for gchac 10184. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjudom (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)

Proof of Theorem pwdjudom
StepHypRef Expression
1 canthwdom 9119 . . . 4 ¬ 𝒫 𝐴* 𝐴
2 0ex 5176 . . . . . 6 ∅ ∈ V
3 reldom 8564 . . . . . . . . 9 Rel ≼
43brrelex2i 5581 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴𝐵) ∈ V)
5 djuexb 9414 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
64, 5sylibr 237 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76simpld 498 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐴 ∈ V)
8 xpsnen2g 8662 . . . . . 6 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
92, 7, 8sylancr 590 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({∅} × 𝐴) ≈ 𝐴)
10 endom 8585 . . . . 5 (({∅} × 𝐴) ≈ 𝐴 → ({∅} × 𝐴) ≼ 𝐴)
11 domwdom 9114 . . . . 5 (({∅} × 𝐴) ≼ 𝐴 → ({∅} × 𝐴) ≼* 𝐴)
12 wdomtr 9115 . . . . . 6 ((𝒫 𝐴* ({∅} × 𝐴) ∧ ({∅} × 𝐴) ≼* 𝐴) → 𝒫 𝐴* 𝐴)
1312expcom 417 . . . . 5 (({∅} × 𝐴) ≼* 𝐴 → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
149, 10, 11, 134syl 19 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴* 𝐴))
151, 14mtoi 202 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ¬ 𝒫 𝐴* ({∅} × 𝐴))
16 pwdjuen 9684 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
177, 7, 16syl2anc 587 . . . . . . . 8 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴))
18 domen1 8712 . . . . . . . 8 (𝒫 (𝐴𝐴) ≈ (𝒫 𝐴 × 𝒫 𝐴) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
1917, 18syl 17 . . . . . . 7 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) ↔ (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵)))
2019ibi 270 . . . . . 6 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (𝐴𝐵))
21 df-dju 9406 . . . . . 6 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2220, 21breqtrdi 5072 . . . . 5 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
23 unxpwdom 9129 . . . . 5 ((𝒫 𝐴 × 𝒫 𝐴) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2422, 23syl 17 . . . 4 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (𝒫 𝐴* ({∅} × 𝐴) ∨ 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2524ord 863 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → (¬ 𝒫 𝐴* ({∅} × 𝐴) → 𝒫 𝐴 ≼ ({1o} × 𝐵)))
2615, 25mpd 15 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴 ≼ ({1o} × 𝐵))
27 1on 8141 . . 3 1o ∈ On
286simprd 499 . . 3 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝐵 ∈ V)
29 xpsnen2g 8662 . . 3 ((1o ∈ On ∧ 𝐵 ∈ V) → ({1o} × 𝐵) ≈ 𝐵)
3027, 28, 29sylancr 590 . 2 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → ({1o} × 𝐵) ≈ 𝐵)
31 domentr 8617 . 2 ((𝒫 𝐴 ≼ ({1o} × 𝐵) ∧ ({1o} × 𝐵) ≈ 𝐵) → 𝒫 𝐴𝐵)
3226, 30, 31syl2anc 587 1 (𝒫 (𝐴𝐴) ≼ (𝐴𝐵) → 𝒫 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  wcel 2114  Vcvv 3399  cun 3842  c0 4212  𝒫 cpw 4489  {csn 4517   class class class wbr 5031   × cxp 5524  Oncon0 6173  1oc1o 8127  cen 8555  cdom 8556  * cwdom 9104  cdju 9403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-1st 7717  df-2nd 7718  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-wdom 9105  df-dju 9406
This theorem is referenced by:  gchdomtri  10132  gchpwdom  10173  gchhar  10182
  Copyright terms: Public domain W3C validator