MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1dif Structured version   Visualization version   GIF version

Theorem dju1dif 10242
Description: Adding and subtracting one gives back the original cardinality. Similar to pncan 11542 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by Jim Kingdon, 20-Aug-2023.)
Assertion
Ref Expression
dju1dif ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem dju1dif
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → 𝐴𝑉)
2 1oex 8532 . . . 4 1o ∈ V
3 djuex 9977 . . . 4 ((𝐴𝑉 ∧ 1o ∈ V) → (𝐴 ⊔ 1o) ∈ V)
41, 2, 3sylancl 585 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → (𝐴 ⊔ 1o) ∈ V)
5 simpr 484 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → 𝐵 ∈ (𝐴 ⊔ 1o))
6 df1o2 8529 . . . . . . . . 9 1o = {∅}
76xpeq2i 5727 . . . . . . . 8 ({1o} × 1o) = ({1o} × {∅})
8 0ex 5325 . . . . . . . . 9 ∅ ∈ V
92, 8xpsn 7175 . . . . . . . 8 ({1o} × {∅}) = {⟨1o, ∅⟩}
107, 9eqtri 2768 . . . . . . 7 ({1o} × 1o) = {⟨1o, ∅⟩}
11 ssun2 4202 . . . . . . 7 ({1o} × 1o) ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
1210, 11eqsstrri 4044 . . . . . 6 {⟨1o, ∅⟩} ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
13 opex 5484 . . . . . . 7 ⟨1o, ∅⟩ ∈ V
1413snss 4810 . . . . . 6 (⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)) ↔ {⟨1o, ∅⟩} ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o)))
1512, 14mpbir 231 . . . . 5 ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
16 df-dju 9970 . . . . 5 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
1715, 16eleqtrri 2843 . . . 4 ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)
1817a1i 11 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o))
19 difsnen 9119 . . 3 (((𝐴 ⊔ 1o) ∈ V ∧ 𝐵 ∈ (𝐴 ⊔ 1o) ∧ ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}))
204, 5, 18, 19syl3anc 1371 . 2 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}))
2116difeq1i 4145 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
22 xp01disjl 8548 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
23 disj3 4477 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
2422, 23mpbi 230 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
25 difun2 4504 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2610difeq2i 4146 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
2724, 25, 263eqtr2i 2774 . . . 4 ({∅} × 𝐴) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
2821, 27eqtr4i 2771 . . 3 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
29 xpsnen2g 9131 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
308, 1, 29sylancr 586 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ({∅} × 𝐴) ≈ 𝐴)
3128, 30eqbrtrid 5201 . 2 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ 𝐴)
32 entr 9066 . 2 ((((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ∧ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ 𝐴) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)
3320, 31, 32syl2anc 583 1 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  1oc1o 8515  cen 9000  cdju 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-1o 8522  df-er 8763  df-en 9004  df-dju 9970
This theorem is referenced by:  canthp1  10723
  Copyright terms: Public domain W3C validator