Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1dif Structured version   Visualization version   GIF version

Theorem dju1dif 9590
 Description: Adding and subtracting one gives back the original cardinality. Similar to pncan 10884 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by Jim Kingdon, 20-Aug-2023.)
Assertion
Ref Expression
dju1dif ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem dju1dif
StepHypRef Expression
1 simpl 486 . . . 4 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → 𝐴𝑉)
2 1oex 8100 . . . 4 1o ∈ V
3 djuex 9328 . . . 4 ((𝐴𝑉 ∧ 1o ∈ V) → (𝐴 ⊔ 1o) ∈ V)
41, 2, 3sylancl 589 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → (𝐴 ⊔ 1o) ∈ V)
5 simpr 488 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → 𝐵 ∈ (𝐴 ⊔ 1o))
6 df1o2 8106 . . . . . . . . 9 1o = {∅}
76xpeq2i 5569 . . . . . . . 8 ({1o} × 1o) = ({1o} × {∅})
8 0ex 5197 . . . . . . . . 9 ∅ ∈ V
92, 8xpsn 6891 . . . . . . . 8 ({1o} × {∅}) = {⟨1o, ∅⟩}
107, 9eqtri 2847 . . . . . . 7 ({1o} × 1o) = {⟨1o, ∅⟩}
11 ssun2 4134 . . . . . . 7 ({1o} × 1o) ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
1210, 11eqsstrri 3987 . . . . . 6 {⟨1o, ∅⟩} ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
13 opex 5343 . . . . . . 7 ⟨1o, ∅⟩ ∈ V
1413snss 4702 . . . . . 6 (⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)) ↔ {⟨1o, ∅⟩} ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o)))
1512, 14mpbir 234 . . . . 5 ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
16 df-dju 9321 . . . . 5 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
1715, 16eleqtrri 2915 . . . 4 ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)
1817a1i 11 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o))
19 difsnen 8589 . . 3 (((𝐴 ⊔ 1o) ∈ V ∧ 𝐵 ∈ (𝐴 ⊔ 1o) ∧ ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}))
204, 5, 18, 19syl3anc 1368 . 2 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}))
2116difeq1i 4080 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
22 xp01disjl 8111 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
23 disj3 4385 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
2422, 23mpbi 233 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
25 difun2 4411 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2610difeq2i 4081 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
2724, 25, 263eqtr2i 2853 . . . 4 ({∅} × 𝐴) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
2821, 27eqtr4i 2850 . . 3 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
29 xpsnen2g 8600 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
308, 1, 29sylancr 590 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ({∅} × 𝐴) ≈ 𝐴)
3128, 30eqbrtrid 5087 . 2 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ 𝐴)
32 entr 8551 . 2 ((((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ∧ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ 𝐴) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)
3320, 31, 32syl2anc 587 1 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3480   ∖ cdif 3916   ∪ cun 3917   ∩ cin 3918   ⊆ wss 3919  ∅c0 4275  {csn 4549  ⟨cop 4555   class class class wbr 5052   × cxp 5540  1oc1o 8085   ≈ cen 8496   ⊔ cdju 9318 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-1st 7679  df-2nd 7680  df-1o 8092  df-er 8279  df-en 8500  df-dju 9321 This theorem is referenced by:  canthp1  10068
 Copyright terms: Public domain W3C validator