MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1dif Structured version   Visualization version   GIF version

Theorem dju1dif 10116
Description: Adding and subtracting one gives back the original cardinality. Similar to pncan 11415 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by Jim Kingdon, 20-Aug-2023.)
Assertion
Ref Expression
dju1dif ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem dju1dif
StepHypRef Expression
1 simpl 484 . . . 4 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → 𝐴𝑉)
2 1oex 8426 . . . 4 1o ∈ V
3 djuex 9852 . . . 4 ((𝐴𝑉 ∧ 1o ∈ V) → (𝐴 ⊔ 1o) ∈ V)
41, 2, 3sylancl 587 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → (𝐴 ⊔ 1o) ∈ V)
5 simpr 486 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → 𝐵 ∈ (𝐴 ⊔ 1o))
6 df1o2 8423 . . . . . . . . 9 1o = {∅}
76xpeq2i 5664 . . . . . . . 8 ({1o} × 1o) = ({1o} × {∅})
8 0ex 5268 . . . . . . . . 9 ∅ ∈ V
92, 8xpsn 7091 . . . . . . . 8 ({1o} × {∅}) = {⟨1o, ∅⟩}
107, 9eqtri 2761 . . . . . . 7 ({1o} × 1o) = {⟨1o, ∅⟩}
11 ssun2 4137 . . . . . . 7 ({1o} × 1o) ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
1210, 11eqsstrri 3983 . . . . . 6 {⟨1o, ∅⟩} ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o))
13 opex 5425 . . . . . . 7 ⟨1o, ∅⟩ ∈ V
1413snss 4750 . . . . . 6 (⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o)) ↔ {⟨1o, ∅⟩} ⊆ (({∅} × 𝐴) ∪ ({1o} × 1o)))
1512, 14mpbir 230 . . . . 5 ⟨1o, ∅⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 1o))
16 df-dju 9845 . . . . 5 (𝐴 ⊔ 1o) = (({∅} × 𝐴) ∪ ({1o} × 1o))
1715, 16eleqtrri 2833 . . . 4 ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)
1817a1i 11 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o))
19 difsnen 9003 . . 3 (((𝐴 ⊔ 1o) ∈ V ∧ 𝐵 ∈ (𝐴 ⊔ 1o) ∧ ⟨1o, ∅⟩ ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}))
204, 5, 18, 19syl3anc 1372 . 2 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}))
2116difeq1i 4082 . . . 4 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
22 xp01disjl 8442 . . . . . 6 (({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅
23 disj3 4417 . . . . . 6 ((({∅} × 𝐴) ∩ ({1o} × 1o)) = ∅ ↔ ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o)))
2422, 23mpbi 229 . . . . 5 ({∅} × 𝐴) = (({∅} × 𝐴) ∖ ({1o} × 1o))
25 difun2 4444 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = (({∅} × 𝐴) ∖ ({1o} × 1o))
2610difeq2i 4083 . . . . 5 ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ ({1o} × 1o)) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
2724, 25, 263eqtr2i 2767 . . . 4 ({∅} × 𝐴) = ((({∅} × 𝐴) ∪ ({1o} × 1o)) ∖ {⟨1o, ∅⟩})
2821, 27eqtr4i 2764 . . 3 ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) = ({∅} × 𝐴)
29 xpsnen2g 9015 . . . 4 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
308, 1, 29sylancr 588 . . 3 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ({∅} × 𝐴) ≈ 𝐴)
3128, 30eqbrtrid 5144 . 2 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ 𝐴)
32 entr 8952 . 2 ((((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ∧ ((𝐴 ⊔ 1o) ∖ {⟨1o, ∅⟩}) ≈ 𝐴) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)
3320, 31, 32syl2anc 585 1 ((𝐴𝑉𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4286  {csn 4590  cop 4596   class class class wbr 5109   × cxp 5635  1oc1o 8409  cen 8886  cdju 9842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-1st 7925  df-2nd 7926  df-1o 8416  df-er 8654  df-en 8890  df-dju 9845
This theorem is referenced by:  canthp1  10598
  Copyright terms: Public domain W3C validator