MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1p1e2 Structured version   Visualization version   GIF version

Theorem dju1p1e2 10188
Description: 1+1=2 for cardinal number addition, derived from pm54.43 10015 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9909), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use instead of =. See dju1p1e2ALT 10189 for a shorter proof that doesn't use pm54.43 10015. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 df-dju 9915 . 2 (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o))
2 xp01disjl 8504 . . 3 (({∅} × 1o) ∩ ({1o} × 1o)) = ∅
3 0ex 5277 . . . . 5 ∅ ∈ V
4 1on 8492 . . . . 5 1o ∈ On
5 xpsnen2g 9079 . . . . 5 ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o)
63, 4, 5mp2an 692 . . . 4 ({∅} × 1o) ≈ 1o
7 xpsnen2g 9079 . . . . 5 ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o)
84, 4, 7mp2an 692 . . . 4 ({1o} × 1o) ≈ 1o
9 pm54.43 10015 . . . 4 ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o))
106, 8, 9mp2an 692 . . 3 ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)
112, 10mpbi 230 . 2 (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o
121, 11eqbrtri 5140 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  cin 3925  c0 4308  {csn 4601   class class class wbr 5119   × cxp 5652  Oncon0 6352  1oc1o 8473  2oc2o 8474  cen 8956  cdju 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-dju 9915
This theorem is referenced by:  pr2dom  43551
  Copyright terms: Public domain W3C validator