MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1p1e2 Structured version   Visualization version   GIF version

Theorem dju1p1e2 9979
Description: 1+1=2 for cardinal number addition, derived from pm54.43 9807 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9701), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use instead of =. See dju1p1e2ALT 9980 for a shorter proof that doesn't use pm54.43 9807. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 df-dju 9707 . 2 (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o))
2 xp01disjl 8353 . . 3 (({∅} × 1o) ∩ ({1o} × 1o)) = ∅
3 0ex 5240 . . . . 5 ∅ ∈ V
4 1on 8340 . . . . 5 1o ∈ On
5 xpsnen2g 8890 . . . . 5 ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o)
63, 4, 5mp2an 690 . . . 4 ({∅} × 1o) ≈ 1o
7 xpsnen2g 8890 . . . . 5 ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o)
84, 4, 7mp2an 690 . . . 4 ({1o} × 1o) ≈ 1o
9 pm54.43 9807 . . . 4 ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o))
106, 8, 9mp2an 690 . . 3 ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)
112, 10mpbi 229 . 2 (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o
121, 11eqbrtri 5102 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2104  Vcvv 3437  cun 3890  cin 3891  c0 4262  {csn 4565   class class class wbr 5081   × cxp 5598  Oncon0 6281  1oc1o 8321  2oc2o 8322  cen 8761  cdju 9704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3332  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-1st 7863  df-2nd 7864  df-1o 8328  df-2o 8329  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-dju 9707
This theorem is referenced by:  pr2dom  41347
  Copyright terms: Public domain W3C validator