| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dju1p1e2 | Structured version Visualization version GIF version | ||
| Description: 1+1=2 for cardinal number addition, derived from pm54.43 9897 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9791), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use ≈ instead of =. See dju1p1e2ALT 10069 for a shorter proof that doesn't use pm54.43 9897. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9797 | . 2 ⊢ (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o)) | |
| 2 | xp01disjl 8410 | . . 3 ⊢ (({∅} × 1o) ∩ ({1o} × 1o)) = ∅ | |
| 3 | 0ex 5246 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 1on 8400 | . . . . 5 ⊢ 1o ∈ On | |
| 5 | xpsnen2g 8987 | . . . . 5 ⊢ ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ ({∅} × 1o) ≈ 1o |
| 7 | xpsnen2g 8987 | . . . . 5 ⊢ ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o) | |
| 8 | 4, 4, 7 | mp2an 692 | . . . 4 ⊢ ({1o} × 1o) ≈ 1o |
| 9 | pm54.43 9897 | . . . 4 ⊢ ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)) | |
| 10 | 6, 8, 9 | mp2an 692 | . . 3 ⊢ ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o) |
| 11 | 2, 10 | mpbi 230 | . 2 ⊢ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o |
| 12 | 1, 11 | eqbrtri 5113 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ∩ cin 3902 ∅c0 4284 {csn 4577 class class class wbr 5092 × cxp 5617 Oncon0 6307 1oc1o 8381 2oc2o 8382 ≈ cen 8869 ⊔ cdju 9794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-1st 7924 df-2nd 7925 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-dju 9797 |
| This theorem is referenced by: pr2dom 43520 |
| Copyright terms: Public domain | W3C validator |