MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1p1e2 Structured version   Visualization version   GIF version

Theorem dju1p1e2 10065
Description: 1+1=2 for cardinal number addition, derived from pm54.43 9894 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9788), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use instead of =. See dju1p1e2ALT 10066 for a shorter proof that doesn't use pm54.43 9894. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 df-dju 9794 . 2 (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o))
2 xp01disjl 8407 . . 3 (({∅} × 1o) ∩ ({1o} × 1o)) = ∅
3 0ex 5243 . . . . 5 ∅ ∈ V
4 1on 8397 . . . . 5 1o ∈ On
5 xpsnen2g 8983 . . . . 5 ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o)
63, 4, 5mp2an 692 . . . 4 ({∅} × 1o) ≈ 1o
7 xpsnen2g 8983 . . . . 5 ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o)
84, 4, 7mp2an 692 . . . 4 ({1o} × 1o) ≈ 1o
9 pm54.43 9894 . . . 4 ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o))
106, 8, 9mp2an 692 . . 3 ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)
112, 10mpbi 230 . 2 (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o
121, 11eqbrtri 5110 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  cin 3896  c0 4280  {csn 4573   class class class wbr 5089   × cxp 5612  Oncon0 6306  1oc1o 8378  2oc2o 8379  cen 8866  cdju 9791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-dju 9794
This theorem is referenced by:  pr2dom  43619
  Copyright terms: Public domain W3C validator