| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dju1p1e2 | Structured version Visualization version GIF version | ||
| Description: 1+1=2 for cardinal number addition, derived from pm54.43 9930 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9824), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use ≈ instead of =. See dju1p1e2ALT 10104 for a shorter proof that doesn't use pm54.43 9930. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9830 | . 2 ⊢ (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o)) | |
| 2 | xp01disjl 8433 | . . 3 ⊢ (({∅} × 1o) ∩ ({1o} × 1o)) = ∅ | |
| 3 | 0ex 5257 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 1on 8423 | . . . . 5 ⊢ 1o ∈ On | |
| 5 | xpsnen2g 9011 | . . . . 5 ⊢ ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ ({∅} × 1o) ≈ 1o |
| 7 | xpsnen2g 9011 | . . . . 5 ⊢ ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o) | |
| 8 | 4, 4, 7 | mp2an 692 | . . . 4 ⊢ ({1o} × 1o) ≈ 1o |
| 9 | pm54.43 9930 | . . . 4 ⊢ ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)) | |
| 10 | 6, 8, 9 | mp2an 692 | . . 3 ⊢ ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o) |
| 11 | 2, 10 | mpbi 230 | . 2 ⊢ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o |
| 12 | 1, 11 | eqbrtri 5123 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ∩ cin 3910 ∅c0 4292 {csn 4585 class class class wbr 5102 × cxp 5629 Oncon0 6320 1oc1o 8404 2oc2o 8405 ≈ cen 8892 ⊔ cdju 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-dju 9830 |
| This theorem is referenced by: pr2dom 43509 |
| Copyright terms: Public domain | W3C validator |