![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dju1p1e2 | Structured version Visualization version GIF version |
Description: 1+1=2 for cardinal number addition, derived from pm54.43 9993 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9887), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use ≈ instead of =. See dju1p1e2ALT 10166 for a shorter proof that doesn't use pm54.43 9993. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9893 | . 2 ⊢ (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o)) | |
2 | xp01disjl 8489 | . . 3 ⊢ (({∅} × 1o) ∩ ({1o} × 1o)) = ∅ | |
3 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 1on 8475 | . . . . 5 ⊢ 1o ∈ On | |
5 | xpsnen2g 9062 | . . . . 5 ⊢ ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o) | |
6 | 3, 4, 5 | mp2an 691 | . . . 4 ⊢ ({∅} × 1o) ≈ 1o |
7 | xpsnen2g 9062 | . . . . 5 ⊢ ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o) | |
8 | 4, 4, 7 | mp2an 691 | . . . 4 ⊢ ({1o} × 1o) ≈ 1o |
9 | pm54.43 9993 | . . . 4 ⊢ ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)) | |
10 | 6, 8, 9 | mp2an 691 | . . 3 ⊢ ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o) |
11 | 2, 10 | mpbi 229 | . 2 ⊢ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o |
12 | 1, 11 | eqbrtri 5169 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 {csn 4628 class class class wbr 5148 × cxp 5674 Oncon0 6362 1oc1o 8456 2oc2o 8457 ≈ cen 8933 ⊔ cdju 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-1st 7972 df-2nd 7973 df-1o 8463 df-2o 8464 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-dju 9893 |
This theorem is referenced by: pr2dom 42264 |
Copyright terms: Public domain | W3C validator |