| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dju1p1e2 | Structured version Visualization version GIF version | ||
| Description: 1+1=2 for cardinal number addition, derived from pm54.43 9961 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9855), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use ≈ instead of =. See dju1p1e2ALT 10135 for a shorter proof that doesn't use pm54.43 9961. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9861 | . 2 ⊢ (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o)) | |
| 2 | xp01disjl 8459 | . . 3 ⊢ (({∅} × 1o) ∩ ({1o} × 1o)) = ∅ | |
| 3 | 0ex 5265 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 1on 8449 | . . . . 5 ⊢ 1o ∈ On | |
| 5 | xpsnen2g 9039 | . . . . 5 ⊢ ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ ({∅} × 1o) ≈ 1o |
| 7 | xpsnen2g 9039 | . . . . 5 ⊢ ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o) | |
| 8 | 4, 4, 7 | mp2an 692 | . . . 4 ⊢ ({1o} × 1o) ≈ 1o |
| 9 | pm54.43 9961 | . . . 4 ⊢ ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)) | |
| 10 | 6, 8, 9 | mp2an 692 | . . 3 ⊢ ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o) |
| 11 | 2, 10 | mpbi 230 | . 2 ⊢ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o |
| 12 | 1, 11 | eqbrtri 5131 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 {csn 4592 class class class wbr 5110 × cxp 5639 Oncon0 6335 1oc1o 8430 2oc2o 8431 ≈ cen 8918 ⊔ cdju 9858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-dju 9861 |
| This theorem is referenced by: pr2dom 43523 |
| Copyright terms: Public domain | W3C validator |