MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1p1e2 Structured version   Visualization version   GIF version

Theorem dju1p1e2 10170
Description: 1+1=2 for cardinal number addition, derived from pm54.43 9998 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9892), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use instead of =. See dju1p1e2ALT 10171 for a shorter proof that doesn't use pm54.43 9998. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.)
Assertion
Ref Expression
dju1p1e2 (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 df-dju 9898 . 2 (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o))
2 xp01disjl 8494 . . 3 (({∅} × 1o) ∩ ({1o} × 1o)) = ∅
3 0ex 5306 . . . . 5 ∅ ∈ V
4 1on 8480 . . . . 5 1o ∈ On
5 xpsnen2g 9067 . . . . 5 ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o)
63, 4, 5mp2an 688 . . . 4 ({∅} × 1o) ≈ 1o
7 xpsnen2g 9067 . . . . 5 ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o)
84, 4, 7mp2an 688 . . . 4 ({1o} × 1o) ≈ 1o
9 pm54.43 9998 . . . 4 ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o))
106, 8, 9mp2an 688 . . 3 ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)
112, 10mpbi 229 . 2 (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o
121, 11eqbrtri 5168 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2104  Vcvv 3472  cun 3945  cin 3946  c0 4321  {csn 4627   class class class wbr 5147   × cxp 5673  Oncon0 6363  1oc1o 8461  2oc2o 8462  cen 8938  cdju 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1st 7977  df-2nd 7978  df-1o 8468  df-2o 8469  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-dju 9898
This theorem is referenced by:  pr2dom  42580
  Copyright terms: Public domain W3C validator