| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dju1p1e2 | Structured version Visualization version GIF version | ||
| Description: 1+1=2 for cardinal number addition, derived from pm54.43 9894 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9788), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use ≈ instead of =. See dju1p1e2ALT 10066 for a shorter proof that doesn't use pm54.43 9894. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| dju1p1e2 | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9794 | . 2 ⊢ (1o ⊔ 1o) = (({∅} × 1o) ∪ ({1o} × 1o)) | |
| 2 | xp01disjl 8407 | . . 3 ⊢ (({∅} × 1o) ∩ ({1o} × 1o)) = ∅ | |
| 3 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 1on 8397 | . . . . 5 ⊢ 1o ∈ On | |
| 5 | xpsnen2g 8983 | . . . . 5 ⊢ ((∅ ∈ V ∧ 1o ∈ On) → ({∅} × 1o) ≈ 1o) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . 4 ⊢ ({∅} × 1o) ≈ 1o |
| 7 | xpsnen2g 8983 | . . . . 5 ⊢ ((1o ∈ On ∧ 1o ∈ On) → ({1o} × 1o) ≈ 1o) | |
| 8 | 4, 4, 7 | mp2an 692 | . . . 4 ⊢ ({1o} × 1o) ≈ 1o |
| 9 | pm54.43 9894 | . . . 4 ⊢ ((({∅} × 1o) ≈ 1o ∧ ({1o} × 1o) ≈ 1o) → ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o)) | |
| 10 | 6, 8, 9 | mp2an 692 | . . 3 ⊢ ((({∅} × 1o) ∩ ({1o} × 1o)) = ∅ ↔ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o) |
| 11 | 2, 10 | mpbi 230 | . 2 ⊢ (({∅} × 1o) ∪ ({1o} × 1o)) ≈ 2o |
| 12 | 1, 11 | eqbrtri 5110 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 class class class wbr 5089 × cxp 5612 Oncon0 6306 1oc1o 8378 2oc2o 8379 ≈ cen 8866 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-dju 9794 |
| This theorem is referenced by: pr2dom 43619 |
| Copyright terms: Public domain | W3C validator |