Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undjudom | Structured version Visualization version GIF version |
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.) |
Ref | Expression |
---|---|
undjudom | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5200 | . . . . 5 ⊢ ∅ ∈ V | |
2 | xpsnen2g 8738 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ≈ 𝐴) | |
3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} × 𝐴) ≈ 𝐴) |
4 | ensym 8677 | . . . 4 ⊢ (({∅} × 𝐴) ≈ 𝐴 → 𝐴 ≈ ({∅} × 𝐴)) | |
5 | endom 8655 | . . . 4 ⊢ (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴)) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ ({∅} × 𝐴)) |
7 | 1on 8209 | . . . . 5 ⊢ 1o ∈ On | |
8 | xpsnen2g 8738 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ≈ 𝐵) | |
9 | 7, 8 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ({1o} × 𝐵) ≈ 𝐵) |
10 | ensym 8677 | . . . 4 ⊢ (({1o} × 𝐵) ≈ 𝐵 → 𝐵 ≈ ({1o} × 𝐵)) | |
11 | endom 8655 | . . . 4 ⊢ (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵)) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ≼ ({1o} × 𝐵)) |
13 | xp01disjl 8223 | . . . 4 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ | |
14 | undom 8733 | . . . 4 ⊢ (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
15 | 13, 14 | mpan2 691 | . . 3 ⊢ ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
16 | 6, 12, 15 | syl2an 599 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
17 | df-dju 9517 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
18 | 16, 17 | breqtrrdi 5095 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ∩ cin 3865 ∅c0 4237 {csn 4541 class class class wbr 5053 × cxp 5549 Oncon0 6213 1oc1o 8195 ≈ cen 8623 ≼ cdom 8624 ⊔ cdju 9514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-1st 7761 df-2nd 7762 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-dju 9517 |
This theorem is referenced by: djudoml 9798 unnum 9810 ficardun2 9816 ficardun2OLD 9817 pwsdompw 9818 unctb 9819 infunabs 9821 infdju 9822 infdif 9823 pr2dom 40819 tr3dom 40820 |
Copyright terms: Public domain | W3C validator |