MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undjudom Structured version   Visualization version   GIF version

Theorem undjudom 10059
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.)
Assertion
Ref Expression
undjudom ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))

Proof of Theorem undjudom
StepHypRef Expression
1 0ex 5243 . . . . 5 ∅ ∈ V
2 xpsnen2g 8983 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
31, 2mpan 690 . . . 4 (𝐴𝑉 → ({∅} × 𝐴) ≈ 𝐴)
4 ensym 8925 . . . 4 (({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐴))
5 endom 8901 . . . 4 (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴))
63, 4, 53syl 18 . . 3 (𝐴𝑉𝐴 ≼ ({∅} × 𝐴))
7 1on 8397 . . . . 5 1o ∈ On
8 xpsnen2g 8983 . . . . 5 ((1o ∈ On ∧ 𝐵𝑊) → ({1o} × 𝐵) ≈ 𝐵)
97, 8mpan 690 . . . 4 (𝐵𝑊 → ({1o} × 𝐵) ≈ 𝐵)
10 ensym 8925 . . . 4 (({1o} × 𝐵) ≈ 𝐵𝐵 ≈ ({1o} × 𝐵))
11 endom 8901 . . . 4 (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵))
129, 10, 113syl 18 . . 3 (𝐵𝑊𝐵 ≼ ({1o} × 𝐵))
13 xp01disjl 8407 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
14 undom 8978 . . . 4 (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
1513, 14mpan2 691 . . 3 ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
166, 12, 15syl2an 596 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
17 df-dju 9794 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1816, 17breqtrrdi 5131 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  cin 3896  c0 4280  {csn 4573   class class class wbr 5089   × cxp 5612  Oncon0 6306  1oc1o 8378  cen 8866  cdom 8867  cdju 9791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-dju 9794
This theorem is referenced by:  djudoml  10076  unnum  10088  ficardun2  10093  pwsdompw  10094  unctb  10095  infunabs  10097  infdju  10098  infdif  10099  pr2dom  43619  tr3dom  43620
  Copyright terms: Public domain W3C validator