Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undjudom | Structured version Visualization version GIF version |
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.) |
Ref | Expression |
---|---|
undjudom | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
2 | xpsnen2g 8805 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ≈ 𝐴) | |
3 | 1, 2 | mpan 686 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} × 𝐴) ≈ 𝐴) |
4 | ensym 8744 | . . . 4 ⊢ (({∅} × 𝐴) ≈ 𝐴 → 𝐴 ≈ ({∅} × 𝐴)) | |
5 | endom 8722 | . . . 4 ⊢ (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴)) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ ({∅} × 𝐴)) |
7 | 1on 8274 | . . . . 5 ⊢ 1o ∈ On | |
8 | xpsnen2g 8805 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ≈ 𝐵) | |
9 | 7, 8 | mpan 686 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ({1o} × 𝐵) ≈ 𝐵) |
10 | ensym 8744 | . . . 4 ⊢ (({1o} × 𝐵) ≈ 𝐵 → 𝐵 ≈ ({1o} × 𝐵)) | |
11 | endom 8722 | . . . 4 ⊢ (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵)) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ≼ ({1o} × 𝐵)) |
13 | xp01disjl 8288 | . . . 4 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ | |
14 | undom 8800 | . . . 4 ⊢ (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
15 | 13, 14 | mpan2 687 | . . 3 ⊢ ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
16 | 6, 12, 15 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
17 | df-dju 9590 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
18 | 16, 17 | breqtrrdi 5112 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 class class class wbr 5070 × cxp 5578 Oncon0 6251 1oc1o 8260 ≈ cen 8688 ≼ cdom 8689 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-dju 9590 |
This theorem is referenced by: djudoml 9871 unnum 9883 ficardun2 9889 ficardun2OLD 9890 pwsdompw 9891 unctb 9892 infunabs 9894 infdju 9895 infdif 9896 pr2dom 41032 tr3dom 41033 |
Copyright terms: Public domain | W3C validator |