MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undjudom Structured version   Visualization version   GIF version

Theorem undjudom 9781
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.)
Assertion
Ref Expression
undjudom ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))

Proof of Theorem undjudom
StepHypRef Expression
1 0ex 5200 . . . . 5 ∅ ∈ V
2 xpsnen2g 8738 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
31, 2mpan 690 . . . 4 (𝐴𝑉 → ({∅} × 𝐴) ≈ 𝐴)
4 ensym 8677 . . . 4 (({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐴))
5 endom 8655 . . . 4 (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴))
63, 4, 53syl 18 . . 3 (𝐴𝑉𝐴 ≼ ({∅} × 𝐴))
7 1on 8209 . . . . 5 1o ∈ On
8 xpsnen2g 8738 . . . . 5 ((1o ∈ On ∧ 𝐵𝑊) → ({1o} × 𝐵) ≈ 𝐵)
97, 8mpan 690 . . . 4 (𝐵𝑊 → ({1o} × 𝐵) ≈ 𝐵)
10 ensym 8677 . . . 4 (({1o} × 𝐵) ≈ 𝐵𝐵 ≈ ({1o} × 𝐵))
11 endom 8655 . . . 4 (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵))
129, 10, 113syl 18 . . 3 (𝐵𝑊𝐵 ≼ ({1o} × 𝐵))
13 xp01disjl 8223 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
14 undom 8733 . . . 4 (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
1513, 14mpan2 691 . . 3 ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
166, 12, 15syl2an 599 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
17 df-dju 9517 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1816, 17breqtrrdi 5095 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  cun 3864  cin 3865  c0 4237  {csn 4541   class class class wbr 5053   × cxp 5549  Oncon0 6213  1oc1o 8195  cen 8623  cdom 8624  cdju 9514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-1st 7761  df-2nd 7762  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-dju 9517
This theorem is referenced by:  djudoml  9798  unnum  9810  ficardun2  9816  ficardun2OLD  9817  pwsdompw  9818  unctb  9819  infunabs  9821  infdju  9822  infdif  9823  pr2dom  40819  tr3dom  40820
  Copyright terms: Public domain W3C validator