MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undjudom Structured version   Visualization version   GIF version

Theorem undjudom 10062
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.)
Assertion
Ref Expression
undjudom ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))

Proof of Theorem undjudom
StepHypRef Expression
1 0ex 5246 . . . . 5 ∅ ∈ V
2 xpsnen2g 8987 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
31, 2mpan 690 . . . 4 (𝐴𝑉 → ({∅} × 𝐴) ≈ 𝐴)
4 ensym 8928 . . . 4 (({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐴))
5 endom 8904 . . . 4 (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴))
63, 4, 53syl 18 . . 3 (𝐴𝑉𝐴 ≼ ({∅} × 𝐴))
7 1on 8400 . . . . 5 1o ∈ On
8 xpsnen2g 8987 . . . . 5 ((1o ∈ On ∧ 𝐵𝑊) → ({1o} × 𝐵) ≈ 𝐵)
97, 8mpan 690 . . . 4 (𝐵𝑊 → ({1o} × 𝐵) ≈ 𝐵)
10 ensym 8928 . . . 4 (({1o} × 𝐵) ≈ 𝐵𝐵 ≈ ({1o} × 𝐵))
11 endom 8904 . . . 4 (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵))
129, 10, 113syl 18 . . 3 (𝐵𝑊𝐵 ≼ ({1o} × 𝐵))
13 xp01disjl 8410 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
14 undom 8982 . . . 4 (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
1513, 14mpan2 691 . . 3 ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
166, 12, 15syl2an 596 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
17 df-dju 9797 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1816, 17breqtrrdi 5134 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  cin 3902  c0 4284  {csn 4577   class class class wbr 5092   × cxp 5617  Oncon0 6307  1oc1o 8381  cen 8869  cdom 8870  cdju 9794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-dju 9797
This theorem is referenced by:  djudoml  10079  unnum  10091  ficardun2  10096  pwsdompw  10097  unctb  10098  infunabs  10100  infdju  10101  infdif  10102  pr2dom  43510  tr3dom  43511
  Copyright terms: Public domain W3C validator