| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undjudom | Structured version Visualization version GIF version | ||
| Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.) |
| Ref | Expression |
|---|---|
| undjudom | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | xpsnen2g 9079 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ≈ 𝐴) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} × 𝐴) ≈ 𝐴) |
| 4 | ensym 9017 | . . . 4 ⊢ (({∅} × 𝐴) ≈ 𝐴 → 𝐴 ≈ ({∅} × 𝐴)) | |
| 5 | endom 8993 | . . . 4 ⊢ (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴)) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ ({∅} × 𝐴)) |
| 7 | 1on 8492 | . . . . 5 ⊢ 1o ∈ On | |
| 8 | xpsnen2g 9079 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ≈ 𝐵) | |
| 9 | 7, 8 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ({1o} × 𝐵) ≈ 𝐵) |
| 10 | ensym 9017 | . . . 4 ⊢ (({1o} × 𝐵) ≈ 𝐵 → 𝐵 ≈ ({1o} × 𝐵)) | |
| 11 | endom 8993 | . . . 4 ⊢ (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵)) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ≼ ({1o} × 𝐵)) |
| 13 | xp01disjl 8504 | . . . 4 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ | |
| 14 | undom 9073 | . . . 4 ⊢ (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
| 15 | 13, 14 | mpan2 691 | . . 3 ⊢ ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 16 | 6, 12, 15 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
| 17 | df-dju 9915 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 18 | 16, 17 | breqtrrdi 5161 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 {csn 4601 class class class wbr 5119 × cxp 5652 Oncon0 6352 1oc1o 8473 ≈ cen 8956 ≼ cdom 8957 ⊔ cdju 9912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1st 7988 df-2nd 7989 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-dju 9915 |
| This theorem is referenced by: djudoml 10199 unnum 10211 ficardun2 10216 pwsdompw 10217 unctb 10218 infunabs 10220 infdju 10221 infdif 10222 pr2dom 43551 tr3dom 43552 |
| Copyright terms: Public domain | W3C validator |