![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undjudom | Structured version Visualization version GIF version |
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.) |
Ref | Expression |
---|---|
undjudom | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
2 | xpsnen2g 9131 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ≈ 𝐴) | |
3 | 1, 2 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} × 𝐴) ≈ 𝐴) |
4 | ensym 9063 | . . . 4 ⊢ (({∅} × 𝐴) ≈ 𝐴 → 𝐴 ≈ ({∅} × 𝐴)) | |
5 | endom 9039 | . . . 4 ⊢ (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴)) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ ({∅} × 𝐴)) |
7 | 1on 8534 | . . . . 5 ⊢ 1o ∈ On | |
8 | xpsnen2g 9131 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ≈ 𝐵) | |
9 | 7, 8 | mpan 689 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ({1o} × 𝐵) ≈ 𝐵) |
10 | ensym 9063 | . . . 4 ⊢ (({1o} × 𝐵) ≈ 𝐵 → 𝐵 ≈ ({1o} × 𝐵)) | |
11 | endom 9039 | . . . 4 ⊢ (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵)) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ≼ ({1o} × 𝐵)) |
13 | xp01disjl 8548 | . . . 4 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ | |
14 | undom 9125 | . . . 4 ⊢ (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
15 | 13, 14 | mpan2 690 | . . 3 ⊢ ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
16 | 6, 12, 15 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
17 | df-dju 9970 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
18 | 16, 17 | breqtrrdi 5208 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 class class class wbr 5166 × cxp 5698 Oncon0 6395 1oc1o 8515 ≈ cen 9000 ≼ cdom 9001 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1st 8030 df-2nd 8031 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-dju 9970 |
This theorem is referenced by: djudoml 10254 unnum 10266 ficardun2 10271 pwsdompw 10272 unctb 10273 infunabs 10275 infdju 10276 infdif 10277 pr2dom 43489 tr3dom 43490 |
Copyright terms: Public domain | W3C validator |