Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undjudom Structured version   Visualization version   GIF version

Theorem undjudom 9580
 Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.)
Assertion
Ref Expression
undjudom ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))

Proof of Theorem undjudom
StepHypRef Expression
1 0ex 5175 . . . . 5 ∅ ∈ V
2 xpsnen2g 8595 . . . . 5 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
31, 2mpan 689 . . . 4 (𝐴𝑉 → ({∅} × 𝐴) ≈ 𝐴)
4 ensym 8543 . . . 4 (({∅} × 𝐴) ≈ 𝐴𝐴 ≈ ({∅} × 𝐴))
5 endom 8521 . . . 4 (𝐴 ≈ ({∅} × 𝐴) → 𝐴 ≼ ({∅} × 𝐴))
63, 4, 53syl 18 . . 3 (𝐴𝑉𝐴 ≼ ({∅} × 𝐴))
7 1on 8094 . . . . 5 1o ∈ On
8 xpsnen2g 8595 . . . . 5 ((1o ∈ On ∧ 𝐵𝑊) → ({1o} × 𝐵) ≈ 𝐵)
97, 8mpan 689 . . . 4 (𝐵𝑊 → ({1o} × 𝐵) ≈ 𝐵)
10 ensym 8543 . . . 4 (({1o} × 𝐵) ≈ 𝐵𝐵 ≈ ({1o} × 𝐵))
11 endom 8521 . . . 4 (𝐵 ≈ ({1o} × 𝐵) → 𝐵 ≼ ({1o} × 𝐵))
129, 10, 113syl 18 . . 3 (𝐵𝑊𝐵 ≼ ({1o} × 𝐵))
13 xp01disjl 8106 . . . 4 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
14 undom 8590 . . . 4 (((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) ∧ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
1513, 14mpan2 690 . . 3 ((𝐴 ≼ ({∅} × 𝐴) ∧ 𝐵 ≼ ({1o} × 𝐵)) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
166, 12, 15syl2an 598 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
17 df-dju 9316 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1816, 17breqtrrdi 5072 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441   ∪ cun 3879   ∩ cin 3880  ∅c0 4243  {csn 4525   class class class wbr 5030   × cxp 5517  Oncon0 6159  1oc1o 8080   ≈ cen 8491   ≼ cdom 8492   ⊔ cdju 9313 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1st 7673  df-2nd 7674  df-1o 8087  df-er 8274  df-en 8495  df-dom 8496  df-dju 9316 This theorem is referenced by:  djudoml  9597  unnum  9609  ficardun2  9615  ficardun2OLD  9616  pwsdompw  9617  unctb  9618  infunabs  9620  infdju  9621  infdif  9622  pr2dom  40250  tr3dom  40251
 Copyright terms: Public domain W3C validator