Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > endjudisj | Structured version Visualization version GIF version |
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007.) |
Ref | Expression |
---|---|
endjudisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9403 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | 0ex 5175 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | xpsnen2g 8659 | . . . . . 6 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ≈ 𝐴) | |
4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({∅} × 𝐴) ≈ 𝐴) |
5 | 1on 8138 | . . . . . 6 ⊢ 1o ∈ On | |
6 | xpsnen2g 8659 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ≈ 𝐵) | |
7 | 5, 6 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ({1o} × 𝐵) ≈ 𝐵) |
8 | 4, 7 | anim12i 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵)) |
9 | xp01disjl 8152 | . . . . 5 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ | |
10 | 9 | jctl 527 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) |
11 | unen 8644 | . . . 4 ⊢ (((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
12 | 8, 10, 11 | syl2an 599 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ∩ 𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
13 | 12 | 3impa 1111 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
14 | 1, 13 | eqbrtrid 5065 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ∪ cun 3841 ∩ cin 3842 ∅c0 4211 {csn 4516 class class class wbr 5030 × cxp 5523 Oncon0 6172 1oc1o 8124 ≈ cen 8552 ⊔ cdju 9400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-1st 7714 df-2nd 7715 df-1o 8131 df-er 8320 df-en 8556 df-dju 9403 |
This theorem is referenced by: djuenun 9670 dju0en 9675 ficardun 9700 ficardunOLD 9701 ackbij1lem9 9728 canthp1lem1 10152 |
Copyright terms: Public domain | W3C validator |