Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > endjudisj | Structured version Visualization version GIF version |
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007.) |
Ref | Expression |
---|---|
endjudisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9565 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | 0ex 5224 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | xpsnen2g 8782 | . . . . . 6 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ≈ 𝐴) | |
4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({∅} × 𝐴) ≈ 𝐴) |
5 | 1on 8251 | . . . . . 6 ⊢ 1o ∈ On | |
6 | xpsnen2g 8782 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ≈ 𝐵) | |
7 | 5, 6 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ({1o} × 𝐵) ≈ 𝐵) |
8 | 4, 7 | anim12i 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵)) |
9 | xp01disjl 8265 | . . . . 5 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ | |
10 | 9 | jctl 527 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) |
11 | unen 8767 | . . . 4 ⊢ (((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
12 | 8, 10, 11 | syl2an 599 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ∩ 𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
13 | 12 | 3impa 1112 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
14 | 1, 13 | eqbrtrid 5105 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∪ cun 3882 ∩ cin 3883 ∅c0 4254 {csn 4558 class class class wbr 5070 × cxp 5577 Oncon0 6248 1oc1o 8237 ≈ cen 8665 ⊔ cdju 9562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-ord 6251 df-on 6252 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-1st 7801 df-2nd 7802 df-1o 8244 df-er 8433 df-en 8669 df-dju 9565 |
This theorem is referenced by: djuenun 9832 dju0en 9837 ficardun 9862 ficardunOLD 9863 ackbij1lem9 9890 canthp1lem1 10314 |
Copyright terms: Public domain | W3C validator |