| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endjudisj | Structured version Visualization version GIF version | ||
| Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007.) |
| Ref | Expression |
|---|---|
| endjudisj | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 9794 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
| 2 | 0ex 5243 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | xpsnen2g 8983 | . . . . . 6 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ 𝑉) → ({∅} × 𝐴) ≈ 𝐴) | |
| 4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({∅} × 𝐴) ≈ 𝐴) |
| 5 | 1on 8397 | . . . . . 6 ⊢ 1o ∈ On | |
| 6 | xpsnen2g 8983 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝐵 ∈ 𝑊) → ({1o} × 𝐵) ≈ 𝐵) | |
| 7 | 5, 6 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ({1o} × 𝐵) ≈ 𝐵) |
| 8 | 4, 7 | anim12i 613 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵)) |
| 9 | xp01disjl 8407 | . . . . 5 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ | |
| 10 | 9 | jctl 523 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) |
| 11 | unen 8967 | . . . 4 ⊢ (((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) | |
| 12 | 8, 10, 11 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ∩ 𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
| 13 | 12 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴 ∪ 𝐵)) |
| 14 | 1, 13 | eqbrtrid 5124 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 class class class wbr 5089 × cxp 5612 Oncon0 6306 1oc1o 8378 ≈ cen 8866 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-2nd 7922 df-1o 8385 df-er 8622 df-en 8870 df-dju 9794 |
| This theorem is referenced by: djuenun 10062 dju0en 10067 ficardun 10092 ackbij1lem9 10118 canthp1lem1 10543 |
| Copyright terms: Public domain | W3C validator |