MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  endjudisj Structured version   Visualization version   GIF version

Theorem endjudisj 9594
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007.)
Assertion
Ref Expression
endjudisj ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem endjudisj
StepHypRef Expression
1 df-dju 9330 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0ex 5211 . . . . . 6 ∅ ∈ V
3 xpsnen2g 8610 . . . . . 6 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
42, 3mpan 688 . . . . 5 (𝐴𝑉 → ({∅} × 𝐴) ≈ 𝐴)
5 1on 8109 . . . . . 6 1o ∈ On
6 xpsnen2g 8610 . . . . . 6 ((1o ∈ On ∧ 𝐵𝑊) → ({1o} × 𝐵) ≈ 𝐵)
75, 6mpan 688 . . . . 5 (𝐵𝑊 → ({1o} × 𝐵) ≈ 𝐵)
84, 7anim12i 614 . . . 4 ((𝐴𝑉𝐵𝑊) → (({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵))
9 xp01disjl 8121 . . . . 5 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
109jctl 526 . . . 4 ((𝐴𝐵) = ∅ → ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅))
11 unen 8596 . . . 4 (((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴𝐵))
128, 10, 11syl2an 597 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴𝐵))
13123impa 1106 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴𝐵))
141, 13eqbrtrid 5101 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cun 3934  cin 3935  c0 4291  {csn 4567   class class class wbr 5066   × cxp 5553  Oncon0 6191  1oc1o 8095  cen 8506  cdju 9327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-1st 7689  df-2nd 7690  df-1o 8102  df-er 8289  df-en 8510  df-dju 9330
This theorem is referenced by:  djuenun  9596  dju0en  9601  ficardun  9624  ackbij1lem9  9650  canthp1lem1  10074
  Copyright terms: Public domain W3C validator