MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  endjudisj Structured version   Visualization version   GIF version

Theorem endjudisj 10209
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007.)
Assertion
Ref Expression
endjudisj ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem endjudisj
StepHypRef Expression
1 df-dju 9941 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 0ex 5307 . . . . . 6 ∅ ∈ V
3 xpsnen2g 9105 . . . . . 6 ((∅ ∈ V ∧ 𝐴𝑉) → ({∅} × 𝐴) ≈ 𝐴)
42, 3mpan 690 . . . . 5 (𝐴𝑉 → ({∅} × 𝐴) ≈ 𝐴)
5 1on 8518 . . . . . 6 1o ∈ On
6 xpsnen2g 9105 . . . . . 6 ((1o ∈ On ∧ 𝐵𝑊) → ({1o} × 𝐵) ≈ 𝐵)
75, 6mpan 690 . . . . 5 (𝐵𝑊 → ({1o} × 𝐵) ≈ 𝐵)
84, 7anim12i 613 . . . 4 ((𝐴𝑉𝐵𝑊) → (({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵))
9 xp01disjl 8530 . . . . 5 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
109jctl 523 . . . 4 ((𝐴𝐵) = ∅ → ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅))
11 unen 9086 . . . 4 (((({∅} × 𝐴) ≈ 𝐴 ∧ ({1o} × 𝐵) ≈ 𝐵) ∧ ((({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ ∧ (𝐴𝐵) = ∅)) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴𝐵))
128, 10, 11syl2an 596 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴𝐵))
13123impa 1110 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ≈ (𝐴𝐵))
141, 13eqbrtrid 5178 1 ((𝐴𝑉𝐵𝑊 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  cin 3950  c0 4333  {csn 4626   class class class wbr 5143   × cxp 5683  Oncon0 6384  1oc1o 8499  cen 8982  cdju 9938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-1st 8014  df-2nd 8015  df-1o 8506  df-er 8745  df-en 8986  df-dju 9941
This theorem is referenced by:  djuenun  10211  dju0en  10216  ficardun  10241  ackbij1lem9  10267  canthp1lem1  10692
  Copyright terms: Public domain W3C validator