Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveq12d Structured version   Visualization version   GIF version

Theorem afveq12d 47243
Description: Equality deduction for function value, analogous to fveq12d 6829. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
afveq12d.1 (𝜑𝐹 = 𝐺)
afveq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afveq12d (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))

Proof of Theorem afveq12d
StepHypRef Expression
1 afveq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afveq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 47236 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
41, 2fveq12d 6829 . . 3 (𝜑 → (𝐹𝐴) = (𝐺𝐵))
53, 4ifbieq1d 4497 . 2 (𝜑 → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if(𝐺 defAt 𝐵, (𝐺𝐵), V))
6 dfafv2 47242 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
7 dfafv2 47242 . 2 (𝐺'''𝐵) = if(𝐺 defAt 𝐵, (𝐺𝐵), V)
85, 6, 73eqtr4g 2791 1 (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3436  ifcif 4472  cfv 6481   defAt wdfat 47226  '''cafv 47227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-aiota 47195  df-dfat 47229  df-afv 47230
This theorem is referenced by:  afveq1  47244  afveq2  47245  csbafv12g  47247  afvco2  47286  aoveq123d  47288
  Copyright terms: Public domain W3C validator