| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afveq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value, analogous to fveq12d 6829. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| afveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| afveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| afveq12d | ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afveq12d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | afveq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | dfateq12d 47236 | . . 3 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
| 4 | 1, 2 | fveq12d 6829 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| 5 | 3, 4 | ifbieq1d 4497 | . 2 ⊢ (𝜑 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if(𝐺 defAt 𝐵, (𝐺‘𝐵), V)) |
| 6 | dfafv2 47242 | . 2 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
| 7 | dfafv2 47242 | . 2 ⊢ (𝐺'''𝐵) = if(𝐺 defAt 𝐵, (𝐺‘𝐵), V) | |
| 8 | 5, 6, 7 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3436 ifcif 4472 ‘cfv 6481 defAt wdfat 47226 '''cafv 47227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47195 df-dfat 47229 df-afv 47230 |
| This theorem is referenced by: afveq1 47244 afveq2 47245 csbafv12g 47247 afvco2 47286 aoveq123d 47288 |
| Copyright terms: Public domain | W3C validator |