Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveq12d Structured version   Visualization version   GIF version

Theorem afveq12d 47048
Description: Equality deduction for function value, analogous to fveq12d 6927. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
afveq12d.1 (𝜑𝐹 = 𝐺)
afveq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afveq12d (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))

Proof of Theorem afveq12d
StepHypRef Expression
1 afveq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afveq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 47041 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
41, 2fveq12d 6927 . . 3 (𝜑 → (𝐹𝐴) = (𝐺𝐵))
53, 4ifbieq1d 4572 . 2 (𝜑 → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if(𝐺 defAt 𝐵, (𝐺𝐵), V))
6 dfafv2 47047 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
7 dfafv2 47047 . 2 (𝐺'''𝐵) = if(𝐺 defAt 𝐵, (𝐺𝐵), V)
85, 6, 73eqtr4g 2805 1 (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3488  ifcif 4548  cfv 6573   defAt wdfat 47031  '''cafv 47032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-aiota 47000  df-dfat 47034  df-afv 47035
This theorem is referenced by:  afveq1  47049  afveq2  47050  csbafv12g  47052  afvco2  47091  aoveq123d  47093
  Copyright terms: Public domain W3C validator