![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afveq12d | Structured version Visualization version GIF version |
Description: Equality deduction for function value, analogous to fveq12d 6899. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
afveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
afveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
afveq12d | ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afveq12d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | afveq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | dfateq12d 45834 | . . 3 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
4 | 1, 2 | fveq12d 6899 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
5 | 3, 4 | ifbieq1d 4553 | . 2 ⊢ (𝜑 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if(𝐺 defAt 𝐵, (𝐺‘𝐵), V)) |
6 | dfafv2 45840 | . 2 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
7 | dfafv2 45840 | . 2 ⊢ (𝐺'''𝐵) = if(𝐺 defAt 𝐵, (𝐺‘𝐵), V) | |
8 | 5, 6, 7 | 3eqtr4g 2798 | 1 ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Vcvv 3475 ifcif 4529 ‘cfv 6544 defAt wdfat 45824 '''cafv 45825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6496 df-fun 6546 df-fv 6552 df-aiota 45793 df-dfat 45827 df-afv 45828 |
This theorem is referenced by: afveq1 45842 afveq2 45843 csbafv12g 45845 afvco2 45884 aoveq123d 45886 |
Copyright terms: Public domain | W3C validator |