Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveq12d Structured version   Visualization version   GIF version

Theorem afveq12d 47134
Description: Equality deduction for function value, analogous to fveq12d 6865. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
afveq12d.1 (𝜑𝐹 = 𝐺)
afveq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afveq12d (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))

Proof of Theorem afveq12d
StepHypRef Expression
1 afveq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afveq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 47127 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
41, 2fveq12d 6865 . . 3 (𝜑 → (𝐹𝐴) = (𝐺𝐵))
53, 4ifbieq1d 4513 . 2 (𝜑 → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if(𝐺 defAt 𝐵, (𝐺𝐵), V))
6 dfafv2 47133 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
7 dfafv2 47133 . 2 (𝐺'''𝐵) = if(𝐺 defAt 𝐵, (𝐺𝐵), V)
85, 6, 73eqtr4g 2789 1 (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3447  ifcif 4488  cfv 6511   defAt wdfat 47117  '''cafv 47118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-aiota 47086  df-dfat 47120  df-afv 47121
This theorem is referenced by:  afveq1  47135  afveq2  47136  csbafv12g  47138  afvco2  47177  aoveq123d  47179
  Copyright terms: Public domain W3C validator