| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afveq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function value, analogous to fveq12d 6868. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| afveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| afveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| afveq12d | ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afveq12d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | afveq12d.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | dfateq12d 47131 | . . 3 ⊢ (𝜑 → (𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵)) |
| 4 | 1, 2 | fveq12d 6868 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| 5 | 3, 4 | ifbieq1d 4516 | . 2 ⊢ (𝜑 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if(𝐺 defAt 𝐵, (𝐺‘𝐵), V)) |
| 6 | dfafv2 47137 | . 2 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
| 7 | dfafv2 47137 | . 2 ⊢ (𝐺'''𝐵) = if(𝐺 defAt 𝐵, (𝐺‘𝐵), V) | |
| 8 | 5, 6, 7 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3450 ifcif 4491 ‘cfv 6514 defAt wdfat 47121 '''cafv 47122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-aiota 47090 df-dfat 47124 df-afv 47125 |
| This theorem is referenced by: afveq1 47139 afveq2 47140 csbafv12g 47142 afvco2 47181 aoveq123d 47183 |
| Copyright terms: Public domain | W3C validator |