Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inisegn0 | Structured version Visualization version GIF version |
Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
inisegn0 | ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3428 | . 2 ⊢ (𝐴 ∈ ran 𝐹 → 𝐴 ∈ V) | |
2 | snprc 4613 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | 2 | biimpi 219 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
4 | 3 | imaeq2d 5905 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = (◡𝐹 “ ∅)) |
5 | ima0 5921 | . . . 4 ⊢ (◡𝐹 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2809 | . . 3 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = ∅) |
7 | 6 | necon1ai 2978 | . 2 ⊢ ((◡𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V) |
8 | eleq1 2839 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹 ↔ 𝐴 ∈ ran 𝐹)) | |
9 | sneq 4535 | . . . . 5 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
10 | 9 | imaeq2d 5905 | . . . 4 ⊢ (𝑎 = 𝐴 → (◡𝐹 “ {𝑎}) = (◡𝐹 “ {𝐴})) |
11 | 10 | neeq1d 3010 | . . 3 ⊢ (𝑎 = 𝐴 → ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
12 | abn0 4280 | . . . 4 ⊢ ({𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎) | |
13 | iniseg 5936 | . . . . . 6 ⊢ (𝑎 ∈ V → (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎}) | |
14 | 13 | elv 3415 | . . . . 5 ⊢ (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎} |
15 | 14 | neeq1i 3015 | . . . 4 ⊢ ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅) |
16 | vex 3413 | . . . . 5 ⊢ 𝑎 ∈ V | |
17 | 16 | elrn 5738 | . . . 4 ⊢ (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎) |
18 | 12, 15, 17 | 3bitr4ri 307 | . . 3 ⊢ (𝑎 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑎}) ≠ ∅) |
19 | 8, 11, 18 | vtoclbg 3489 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
20 | 1, 7, 19 | pm5.21nii 383 | 1 ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1538 ∃wex 1781 ∈ wcel 2111 {cab 2735 ≠ wne 2951 Vcvv 3409 ∅c0 4227 {csn 4525 class class class wbr 5035 ◡ccnv 5526 ran crn 5528 “ cima 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-xp 5533 df-cnv 5535 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 |
This theorem is referenced by: fnpreimac 30536 dnnumch3lem 40391 dnnumch3 40392 wessf1ornlem 42209 |
Copyright terms: Public domain | W3C validator |