| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inisegn0 | Structured version Visualization version GIF version | ||
| Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| inisegn0 | ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ ran 𝐹 → 𝐴 ∈ V) | |
| 2 | snprc 4681 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 4 | 3 | imaeq2d 6031 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = (◡𝐹 “ ∅)) |
| 5 | ima0 6048 | . . . 4 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | . . 3 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = ∅) |
| 7 | 6 | necon1ai 2952 | . 2 ⊢ ((◡𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V) |
| 8 | eleq1 2816 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹 ↔ 𝐴 ∈ ran 𝐹)) | |
| 9 | sneq 4599 | . . . . 5 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 10 | 9 | imaeq2d 6031 | . . . 4 ⊢ (𝑎 = 𝐴 → (◡𝐹 “ {𝑎}) = (◡𝐹 “ {𝐴})) |
| 11 | 10 | neeq1d 2984 | . . 3 ⊢ (𝑎 = 𝐴 → ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 12 | abn0 4348 | . . . 4 ⊢ ({𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎) | |
| 13 | iniseg 6068 | . . . . . 6 ⊢ (𝑎 ∈ V → (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎}) | |
| 14 | 13 | elv 3452 | . . . . 5 ⊢ (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎} |
| 15 | 14 | neeq1i 2989 | . . . 4 ⊢ ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅) |
| 16 | vex 3451 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 17 | 16 | elrn 5857 | . . . 4 ⊢ (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎) |
| 18 | 12, 15, 17 | 3bitr4ri 304 | . . 3 ⊢ (𝑎 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑎}) ≠ ∅) |
| 19 | 8, 11, 18 | vtoclbg 3523 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 20 | 1, 7, 19 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 Vcvv 3447 ∅c0 4296 {csn 4589 class class class wbr 5107 ◡ccnv 5637 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: fnpreimac 32595 dnnumch3lem 43035 dnnumch3 43036 wessf1ornlem 45179 |
| Copyright terms: Public domain | W3C validator |