| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inisegn0 | Structured version Visualization version GIF version | ||
| Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| inisegn0 | ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝐴 ∈ ran 𝐹 → 𝐴 ∈ V) | |
| 2 | snprc 4698 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 4 | 3 | imaeq2d 6052 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = (◡𝐹 “ ∅)) |
| 5 | ima0 6069 | . . . 4 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2787 | . . 3 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = ∅) |
| 7 | 6 | necon1ai 2960 | . 2 ⊢ ((◡𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V) |
| 8 | eleq1 2823 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹 ↔ 𝐴 ∈ ran 𝐹)) | |
| 9 | sneq 4616 | . . . . 5 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 10 | 9 | imaeq2d 6052 | . . . 4 ⊢ (𝑎 = 𝐴 → (◡𝐹 “ {𝑎}) = (◡𝐹 “ {𝐴})) |
| 11 | 10 | neeq1d 2992 | . . 3 ⊢ (𝑎 = 𝐴 → ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 12 | abn0 4365 | . . . 4 ⊢ ({𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎) | |
| 13 | iniseg 6089 | . . . . . 6 ⊢ (𝑎 ∈ V → (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎}) | |
| 14 | 13 | elv 3469 | . . . . 5 ⊢ (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎} |
| 15 | 14 | neeq1i 2997 | . . . 4 ⊢ ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅) |
| 16 | vex 3468 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 17 | 16 | elrn 5878 | . . . 4 ⊢ (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎) |
| 18 | 12, 15, 17 | 3bitr4ri 304 | . . 3 ⊢ (𝑎 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑎}) ≠ ∅) |
| 19 | 8, 11, 18 | vtoclbg 3541 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 20 | 1, 7, 19 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ≠ wne 2933 Vcvv 3464 ∅c0 4313 {csn 4606 class class class wbr 5124 ◡ccnv 5658 ran crn 5660 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: fnpreimac 32654 dnnumch3lem 43037 dnnumch3 43038 wessf1ornlem 45176 |
| Copyright terms: Public domain | W3C validator |