| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inisegn0 | Structured version Visualization version GIF version | ||
| Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| inisegn0 | ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ ran 𝐹 → 𝐴 ∈ V) | |
| 2 | snprc 4667 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 4 | 3 | imaeq2d 6008 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = (◡𝐹 “ ∅)) |
| 5 | ima0 6025 | . . . 4 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2782 | . . 3 ⊢ (¬ 𝐴 ∈ V → (◡𝐹 “ {𝐴}) = ∅) |
| 7 | 6 | necon1ai 2955 | . 2 ⊢ ((◡𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V) |
| 8 | eleq1 2819 | . . 3 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹 ↔ 𝐴 ∈ ran 𝐹)) | |
| 9 | sneq 4583 | . . . . 5 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
| 10 | 9 | imaeq2d 6008 | . . . 4 ⊢ (𝑎 = 𝐴 → (◡𝐹 “ {𝑎}) = (◡𝐹 “ {𝐴})) |
| 11 | 10 | neeq1d 2987 | . . 3 ⊢ (𝑎 = 𝐴 → ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 12 | abn0 4332 | . . . 4 ⊢ ({𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎) | |
| 13 | iniseg 6045 | . . . . . 6 ⊢ (𝑎 ∈ V → (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎}) | |
| 14 | 13 | elv 3441 | . . . . 5 ⊢ (◡𝐹 “ {𝑎}) = {𝑏 ∣ 𝑏𝐹𝑎} |
| 15 | 14 | neeq1i 2992 | . . . 4 ⊢ ((◡𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏 ∣ 𝑏𝐹𝑎} ≠ ∅) |
| 16 | vex 3440 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 17 | 16 | elrn 5832 | . . . 4 ⊢ (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎) |
| 18 | 12, 15, 17 | 3bitr4ri 304 | . . 3 ⊢ (𝑎 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑎}) ≠ ∅) |
| 19 | 8, 11, 18 | vtoclbg 3510 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅)) |
| 20 | 1, 7, 19 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 Vcvv 3436 ∅c0 4280 {csn 4573 class class class wbr 5089 ◡ccnv 5613 ran crn 5615 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: fnpreimac 32653 dnnumch3lem 43149 dnnumch3 43150 wessf1ornlem 45292 |
| Copyright terms: Public domain | W3C validator |