MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inisegn0 Structured version   Visualization version   GIF version

Theorem inisegn0 6058
Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
inisegn0 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)

Proof of Theorem inisegn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3465 . 2 (𝐴 ∈ ran 𝐹𝐴 ∈ V)
2 snprc 4677 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 216 . . . . 5 𝐴 ∈ V → {𝐴} = ∅)
43imaeq2d 6020 . . . 4 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
5 ima0 6037 . . . 4 (𝐹 “ ∅) = ∅
64, 5eqtrdi 2780 . . 3 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
76necon1ai 2952 . 2 ((𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2816 . . 3 (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹𝐴 ∈ ran 𝐹))
9 sneq 4595 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
109imaeq2d 6020 . . . 4 (𝑎 = 𝐴 → (𝐹 “ {𝑎}) = (𝐹 “ {𝐴}))
1110neeq1d 2984 . . 3 (𝑎 = 𝐴 → ((𝐹 “ {𝑎}) ≠ ∅ ↔ (𝐹 “ {𝐴}) ≠ ∅))
12 abn0 4344 . . . 4 ({𝑏𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎)
13 iniseg 6057 . . . . . 6 (𝑎 ∈ V → (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎})
1413elv 3449 . . . . 5 (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎}
1514neeq1i 2989 . . . 4 ((𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏𝑏𝐹𝑎} ≠ ∅)
16 vex 3448 . . . . 5 𝑎 ∈ V
1716elrn 5847 . . . 4 (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎)
1812, 15, 173bitr4ri 304 . . 3 (𝑎 ∈ ran 𝐹 ↔ (𝐹 “ {𝑎}) ≠ ∅)
198, 11, 18vtoclbg 3520 . 2 (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅))
201, 7, 19pm5.21nii 378 1 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  Vcvv 3444  c0 4292  {csn 4585   class class class wbr 5102  ccnv 5630  ran crn 5632  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  fnpreimac  32568  dnnumch3lem  43008  dnnumch3  43009  wessf1ornlem  45152
  Copyright terms: Public domain W3C validator