MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6OLD Structured version   Visualization version   GIF version

Theorem dffun6OLD 6516
Description: Obsolete version of dffun6 6510 as of 19-Dec-2024. (Contributed by NM, 9-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dffun6OLD (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem dffun6OLD
StepHypRef Expression
1 nfcv 2904 . 2 𝑥𝐹
2 nfcv 2904 . 2 𝑦𝐹
31, 2dffun6f 6515 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wal 1540  ∃*wmo 2533   class class class wbr 5106  Rel wrel 5639  Fun wfun 6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-fun 6499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator