MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpomin2 Structured version   Visualization version   GIF version

Theorem frpomin2 6361
Description: Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9790 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.)
Assertion
Ref Expression
frpomin2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝐵

Proof of Theorem frpomin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frpomin 6360 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
2 vex 3483 . . . . . 6 𝑥 ∈ V
32dfpred3 6331 . . . . 5 Pred(𝑅, 𝐵, 𝑥) = {𝑦𝐵𝑦𝑅𝑥}
43eqeq1i 2741 . . . 4 (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ {𝑦𝐵𝑦𝑅𝑥} = ∅)
5 rabeq0 4387 . . . 4 ({𝑦𝐵𝑦𝑅𝑥} = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
64, 5bitri 275 . . 3 (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
76rexbii 3093 . 2 (∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
81, 7sylibr 234 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wne 2939  wral 3060  wrex 3069  {crab 3435  wss 3950  c0 4332   class class class wbr 5142   Po wpo 5589   Fr wfr 5633   Se wse 5634  Predcpred 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-po 5591  df-fr 5636  df-se 5637  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320
This theorem is referenced by:  frpoind  6362  tz6.26  6367  fpr1  8329
  Copyright terms: Public domain W3C validator