Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frpomin2 | Structured version Visualization version GIF version |
Description: Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9365 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.) |
Ref | Expression |
---|---|
frpomin2 | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frpomin 6194 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
2 | vex 3412 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | dfpred3 6170 | . . . . 5 ⊢ Pred(𝑅, 𝐵, 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} |
4 | 3 | eqeq1i 2742 | . . . 4 ⊢ (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
5 | rabeq0 4299 | . . . 4 ⊢ ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
6 | 4, 5 | bitri 278 | . . 3 ⊢ (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
7 | 6 | rexbii 3170 | . 2 ⊢ (∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
8 | 1, 7 | sylibr 237 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ≠ wne 2940 ∀wral 3061 ∃wrex 3062 {crab 3065 ⊆ wss 3866 ∅c0 4237 class class class wbr 5053 Po wpo 5466 Fr wfr 5506 Se wse 5507 Predcpred 6159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-po 5468 df-fr 5509 df-se 5510 df-xp 5557 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 |
This theorem is referenced by: frpoind 6196 fpr1 8043 |
Copyright terms: Public domain | W3C validator |