MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpomin2 Structured version   Visualization version   GIF version

Theorem frpomin2 6343
Description: Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9744 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.)
Assertion
Ref Expression
frpomin2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝐵

Proof of Theorem frpomin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frpomin 6342 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
2 vex 3479 . . . . . 6 𝑥 ∈ V
32dfpred3 6312 . . . . 5 Pred(𝑅, 𝐵, 𝑥) = {𝑦𝐵𝑦𝑅𝑥}
43eqeq1i 2738 . . . 4 (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ {𝑦𝐵𝑦𝑅𝑥} = ∅)
5 rabeq0 4385 . . . 4 ({𝑦𝐵𝑦𝑅𝑥} = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
64, 5bitri 275 . . 3 (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
76rexbii 3095 . 2 (∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
81, 7sylibr 233 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wne 2941  wral 3062  wrex 3071  {crab 3433  wss 3949  c0 4323   class class class wbr 5149   Po wpo 5587   Fr wfr 5629   Se wse 5630  Predcpred 6300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-po 5589  df-fr 5632  df-se 5633  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301
This theorem is referenced by:  frpoind  6344  tz6.26  6349  fpr1  8288
  Copyright terms: Public domain W3C validator