MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpomin2 Structured version   Visualization version   GIF version

Theorem frpomin2 6294
Description: Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9648 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.)
Assertion
Ref Expression
frpomin2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝐵

Proof of Theorem frpomin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frpomin 6293 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
2 vex 3440 . . . . . 6 𝑥 ∈ V
32dfpred3 6265 . . . . 5 Pred(𝑅, 𝐵, 𝑥) = {𝑦𝐵𝑦𝑅𝑥}
43eqeq1i 2736 . . . 4 (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ {𝑦𝐵𝑦𝑅𝑥} = ∅)
5 rabeq0 4337 . . . 4 ({𝑦𝐵𝑦𝑅𝑥} = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
64, 5bitri 275 . . 3 (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
76rexbii 3079 . 2 (∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
81, 7sylibr 234 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4282   class class class wbr 5093   Po wpo 5525   Fr wfr 5569   Se wse 5570  Predcpred 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-po 5527  df-fr 5572  df-se 5573  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254
This theorem is referenced by:  frpoind  6295  tz6.26  6300  fpr1  8239
  Copyright terms: Public domain W3C validator