![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frpomin2 | Structured version Visualization version GIF version |
Description: Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9818 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.) |
Ref | Expression |
---|---|
frpomin2 | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frpomin 6372 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
2 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | dfpred3 6343 | . . . . 5 ⊢ Pred(𝑅, 𝐵, 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} |
4 | 3 | eqeq1i 2745 | . . . 4 ⊢ (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
5 | rabeq0 4411 | . . . 4 ⊢ ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
6 | 4, 5 | bitri 275 | . . 3 ⊢ (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
7 | 6 | rexbii 3100 | . 2 ⊢ (∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
8 | 1, 7 | sylibr 234 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 Po wpo 5605 Fr wfr 5649 Se wse 5650 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-po 5607 df-fr 5652 df-se 5653 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: frpoind 6374 tz6.26 6379 fpr1 8344 |
Copyright terms: Public domain | W3C validator |