| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frpomin2 | Structured version Visualization version GIF version | ||
| Description: Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9768 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.) |
| Ref | Expression |
|---|---|
| frpomin2 | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frpomin 6334 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
| 2 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | dfpred3 6306 | . . . . 5 ⊢ Pred(𝑅, 𝐵, 𝑥) = {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} |
| 4 | 3 | eqeq1i 2741 | . . . 4 ⊢ (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
| 5 | rabeq0 4368 | . . . 4 ⊢ ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | |
| 6 | 4, 5 | bitri 275 | . . 3 ⊢ (Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| 7 | 6 | rexbii 3084 | . 2 ⊢ (∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
| 8 | 1, 7 | sylibr 234 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 Po wpo 5564 Fr wfr 5608 Se wse 5609 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-po 5566 df-fr 5611 df-se 5612 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 |
| This theorem is referenced by: frpoind 6336 tz6.26 6341 fpr1 8307 |
| Copyright terms: Public domain | W3C validator |