Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfima2 | Structured version Visualization version GIF version |
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
Ref | Expression |
---|---|
dfima2 | ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5593 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | dfrn2 5786 | . 2 ⊢ ran (𝐴 ↾ 𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} | |
3 | brres 5887 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦))) | |
4 | 3 | elv 3428 | . . . . 5 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
5 | 4 | exbii 1851 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
6 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
7 | 5, 6 | bitr4i 277 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦) |
8 | 7 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
9 | 1, 2, 8 | 3eqtri 2770 | 1 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 ran crn 5581 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: dfima3 5961 elimag 5962 imasng 5980 dfimafn 6814 isoini 7189 dffin1-5 10075 dfimafnf 30872 ofpreima 30904 dfaimafn 44544 |
Copyright terms: Public domain | W3C validator |