|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfima2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| dfima2 | ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ima 5697 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | dfrn2 5898 | . 2 ⊢ ran (𝐴 ↾ 𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} | |
| 3 | brres 6003 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦))) | |
| 4 | 3 | elv 3484 | . . . . 5 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | 
| 5 | 4 | exbii 1847 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | 
| 6 | df-rex 3070 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦) | 
| 8 | 7 | abbii 2808 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | 
| 9 | 1, 2, 8 | 3eqtri 2768 | 1 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 ∃wrex 3069 Vcvv 3479 class class class wbr 5142 ran crn 5685 ↾ cres 5686 “ cima 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 | 
| This theorem is referenced by: dfima3 6080 elimag 6081 imasng 6101 funimaexg 6652 dfimafn 6970 isoini 7359 dffin1-5 10429 dfimafnf 32647 ofpreima 32676 dfaimafn 47182 | 
| Copyright terms: Public domain | W3C validator |