MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima2 Structured version   Visualization version   GIF version

Theorem dfima2 6066
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfima2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 5691 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 dfrn2 5891 . 2 ran (𝐴𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦}
3 brres 5992 . . . . . 6 (𝑦 ∈ V → (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐵𝑥𝐴𝑦)))
43elv 3467 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐵𝑥𝐴𝑦))
54exbii 1842 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
6 df-rex 3060 . . . 4 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
75, 6bitr4i 277 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝐵 𝑥𝐴𝑦)
87abbii 2795 . 2 {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦} = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
91, 2, 83eqtri 2757 1 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wrex 3059  Vcvv 3461   class class class wbr 5149  ran crn 5679  cres 5680  cima 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691
This theorem is referenced by:  dfima3  6067  elimag  6068  imasng  6088  funimaexg  6640  dfimafn  6960  isoini  7345  dffin1-5  10413  dfimafnf  32502  ofpreima  32532  dfaimafn  46683
  Copyright terms: Public domain W3C validator