| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu2 | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under countable union - indexing on ℕ (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigaclcu2 | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4994 | . . 3 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) |
| 3 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 4 | abid 2711 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) | |
| 5 | eleq1a 2823 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑆 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
| 6 | 5 | ralimi 3066 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
| 7 | r19.23v 3161 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
| 8 | 6, 7 | sylib 218 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
| 9 | 8 | imp 406 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
| 10 | 9 | adantll 714 | . . . . . . 7 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
| 11 | 4, 10 | sylan2b 594 | . . . . . 6 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥 ∈ 𝑆) |
| 12 | 11 | ralrimiva 3125 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
| 13 | nfab1 2893 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} | |
| 14 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝑆 | |
| 15 | 13, 14 | dfss3f 3938 | . . . . 5 ⊢ ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
| 16 | 12, 15 | sylibr 234 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆) |
| 17 | elpw2g 5288 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) | |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) |
| 19 | 16, 18 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆) |
| 20 | nnct 13946 | . . . 4 ⊢ ℕ ≼ ω | |
| 21 | abrexct 32640 | . . . 4 ⊢ (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) | |
| 22 | 20, 21 | mp1i 13 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) |
| 23 | sigaclcu 34107 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) | |
| 24 | 3, 19, 22, 23 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) |
| 25 | 2, 24 | eqeltrd 2828 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ∪ ciun 4955 class class class wbr 5107 ran crn 5639 ωcom 7842 ≼ cdom 8916 ℕcn 12186 sigAlgebracsiga 34098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-siga 34099 |
| This theorem is referenced by: sigaclfu2 34111 sigaclcu3 34112 measiun 34208 boolesineq 34446 |
| Copyright terms: Public domain | W3C validator |