Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcu2 Structured version   Visualization version   GIF version

Theorem sigaclcu2 31489
Description: A sigma-algebra is closed under countable union - indexing on (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
sigaclcu2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclcu2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4917 . . 3 (∀𝑘 ∈ ℕ 𝐴𝑆 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
21adantl 485 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
3 simpl 486 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑆 ran sigAlgebra)
4 abid 2780 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴)
5 eleq1a 2885 . . . . . . . . . . 11 (𝐴𝑆 → (𝑥 = 𝐴𝑥𝑆))
65ralimi 3128 . . . . . . . . . 10 (∀𝑘 ∈ ℕ 𝐴𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆))
7 r19.23v 3238 . . . . . . . . . 10 (∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
86, 7sylib 221 . . . . . . . . 9 (∀𝑘 ∈ ℕ 𝐴𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
98imp 410 . . . . . . . 8 ((∀𝑘 ∈ ℕ 𝐴𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
109adantll 713 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
114, 10sylan2b 596 . . . . . 6 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥𝑆)
1211ralrimiva 3149 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
13 nfab1 2957 . . . . . 6 𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}
14 nfcv 2955 . . . . . 6 𝑥𝑆
1513, 14dfss3f 3906 . . . . 5 ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
1612, 15sylibr 237 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)
17 elpw2g 5211 . . . . 5 (𝑆 ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1817adantr 484 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1916, 18mpbird 260 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆)
20 nnct 13344 . . . 4 ℕ ≼ ω
21 abrexct 30478 . . . 4 (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
2220, 21mp1i 13 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
23 sigaclcu 31486 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
243, 19, 22, 23syl3anc 1368 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
252, 24eqeltrd 2890 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  wss 3881  𝒫 cpw 4497   cuni 4800   ciun 4881   class class class wbr 5030  ran crn 5520  ωcom 7560  cdom 8490  cn 11625  sigAlgebracsiga 31477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-siga 31478
This theorem is referenced by:  sigaclfu2  31490  sigaclcu3  31491  measiun  31587
  Copyright terms: Public domain W3C validator