| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu2 | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is closed under countable union - indexing on ℕ (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigaclcu2 | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4980 | . . 3 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) |
| 3 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 4 | abid 2713 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) | |
| 5 | eleq1a 2826 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑆 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
| 6 | 5 | ralimi 3069 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
| 7 | r19.23v 3159 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
| 8 | 6, 7 | sylib 218 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
| 9 | 8 | imp 406 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
| 10 | 9 | adantll 714 | . . . . . . 7 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
| 11 | 4, 10 | sylan2b 594 | . . . . . 6 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥 ∈ 𝑆) |
| 12 | 11 | ralrimiva 3124 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
| 13 | nfab1 2896 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} | |
| 14 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝑆 | |
| 15 | 13, 14 | dfss3f 3926 | . . . . 5 ⊢ ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
| 16 | 12, 15 | sylibr 234 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆) |
| 17 | elpw2g 5271 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) | |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) |
| 19 | 16, 18 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆) |
| 20 | nnct 13885 | . . . 4 ⊢ ℕ ≼ ω | |
| 21 | abrexct 32693 | . . . 4 ⊢ (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) | |
| 22 | 20, 21 | mp1i 13 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) |
| 23 | sigaclcu 34125 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) | |
| 24 | 3, 19, 22, 23 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) |
| 25 | 2, 24 | eqeltrd 2831 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 ∪ ciun 4941 class class class wbr 5091 ran crn 5617 ωcom 7796 ≼ cdom 8867 ℕcn 12122 sigAlgebracsiga 34116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-siga 34117 |
| This theorem is referenced by: sigaclfu2 34129 sigaclcu3 34130 measiun 34226 boolesineq 34463 |
| Copyright terms: Public domain | W3C validator |