![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu2 | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable union - indexing on ℕ (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
sigaclcu2 | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 5034 | . . 3 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) | |
2 | 1 | adantl 480 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) |
3 | simpl 481 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | abid 2706 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) | |
5 | eleq1a 2820 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑆 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
6 | 5 | ralimi 3072 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
7 | r19.23v 3172 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
8 | 6, 7 | sylib 217 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
9 | 8 | imp 405 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
10 | 9 | adantll 712 | . . . . . . 7 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
11 | 4, 10 | sylan2b 592 | . . . . . 6 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥 ∈ 𝑆) |
12 | 11 | ralrimiva 3135 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
13 | nfab1 2893 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} | |
14 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝑆 | |
15 | 13, 14 | dfss3f 3968 | . . . . 5 ⊢ ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
16 | 12, 15 | sylibr 233 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆) |
17 | elpw2g 5347 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) | |
18 | 17 | adantr 479 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) |
19 | 16, 18 | mpbird 256 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆) |
20 | nnct 13987 | . . . 4 ⊢ ℕ ≼ ω | |
21 | abrexct 32585 | . . . 4 ⊢ (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) | |
22 | 20, 21 | mp1i 13 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) |
23 | sigaclcu 33869 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) | |
24 | 3, 19, 22, 23 | syl3anc 1368 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) |
25 | 2, 24 | eqeltrd 2825 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3050 ∃wrex 3059 ⊆ wss 3944 𝒫 cpw 4604 ∪ cuni 4909 ∪ ciun 4997 class class class wbr 5149 ran crn 5679 ωcom 7871 ≼ cdom 8962 ℕcn 12250 sigAlgebracsiga 33860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-card 9969 df-acn 9972 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-siga 33861 |
This theorem is referenced by: sigaclfu2 33873 sigaclcu3 33874 measiun 33970 |
Copyright terms: Public domain | W3C validator |