Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcu2 Structured version   Visualization version   GIF version

Theorem sigaclcu2 30504
Description: A sigma-algebra is closed under countable union - indexing on (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
sigaclcu2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclcu2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4744 . . 3 (∀𝑘 ∈ ℕ 𝐴𝑆 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
21adantl 469 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
3 simpl 470 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑆 ran sigAlgebra)
4 abid 2794 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴)
5 eleq1a 2880 . . . . . . . . . . 11 (𝐴𝑆 → (𝑥 = 𝐴𝑥𝑆))
65ralimi 3140 . . . . . . . . . 10 (∀𝑘 ∈ ℕ 𝐴𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆))
7 r19.23v 3211 . . . . . . . . . 10 (∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
86, 7sylib 209 . . . . . . . . 9 (∀𝑘 ∈ ℕ 𝐴𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
98imp 395 . . . . . . . 8 ((∀𝑘 ∈ ℕ 𝐴𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
109adantll 696 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
114, 10sylan2b 583 . . . . . 6 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥𝑆)
1211ralrimiva 3154 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
13 nfab1 2950 . . . . . 6 𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}
14 nfcv 2948 . . . . . 6 𝑥𝑆
1513, 14dfss3f 3790 . . . . 5 ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
1612, 15sylibr 225 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)
17 elpw2g 5019 . . . . 5 (𝑆 ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1817adantr 468 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1916, 18mpbird 248 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆)
20 nnct 13000 . . . 4 ℕ ≼ ω
21 abrexct 29817 . . . 4 (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
2220, 21mp1i 13 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
23 sigaclcu 30501 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
243, 19, 22, 23syl3anc 1483 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
252, 24eqeltrd 2885 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  {cab 2792  wral 3096  wrex 3097  wss 3769  𝒫 cpw 4351   cuni 4630   ciun 4712   class class class wbr 4844  ran crn 5312  ωcom 7291  cdom 8186  cn 11301  sigAlgebracsiga 30491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-inf2 8781  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-isom 6106  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-card 9044  df-acn 9047  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-n0 11556  df-z 11640  df-uz 11901  df-siga 30492
This theorem is referenced by:  sigaclfu2  30505  sigaclcu3  30506  measiun  30602
  Copyright terms: Public domain W3C validator