Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcu2 Structured version   Visualization version   GIF version

Theorem sigaclcu2 33106
Description: A sigma-algebra is closed under countable union - indexing on (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
sigaclcu2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclcu2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 5032 . . 3 (∀𝑘 ∈ ℕ 𝐴𝑆 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
21adantl 482 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
3 simpl 483 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑆 ran sigAlgebra)
4 abid 2713 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴)
5 eleq1a 2828 . . . . . . . . . . 11 (𝐴𝑆 → (𝑥 = 𝐴𝑥𝑆))
65ralimi 3083 . . . . . . . . . 10 (∀𝑘 ∈ ℕ 𝐴𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆))
7 r19.23v 3182 . . . . . . . . . 10 (∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
86, 7sylib 217 . . . . . . . . 9 (∀𝑘 ∈ ℕ 𝐴𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
98imp 407 . . . . . . . 8 ((∀𝑘 ∈ ℕ 𝐴𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
109adantll 712 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
114, 10sylan2b 594 . . . . . 6 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥𝑆)
1211ralrimiva 3146 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
13 nfab1 2905 . . . . . 6 𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}
14 nfcv 2903 . . . . . 6 𝑥𝑆
1513, 14dfss3f 3972 . . . . 5 ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
1612, 15sylibr 233 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)
17 elpw2g 5343 . . . . 5 (𝑆 ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1817adantr 481 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1916, 18mpbird 256 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆)
20 nnct 13942 . . . 4 ℕ ≼ ω
21 abrexct 31928 . . . 4 (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
2220, 21mp1i 13 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
23 sigaclcu 33103 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
243, 19, 22, 23syl3anc 1371 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
252, 24eqeltrd 2833 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  wss 3947  𝒫 cpw 4601   cuni 4907   ciun 4996   class class class wbr 5147  ran crn 5676  ωcom 7851  cdom 8933  cn 12208  sigAlgebracsiga 33094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-siga 33095
This theorem is referenced by:  sigaclfu2  33107  sigaclcu3  33108  measiun  33204
  Copyright terms: Public domain W3C validator