Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclcu2 Structured version   Visualization version   GIF version

Theorem sigaclcu2 33872
Description: A sigma-algebra is closed under countable union - indexing on (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
sigaclcu2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Distinct variable group:   𝑆,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclcu2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 5034 . . 3 (∀𝑘 ∈ ℕ 𝐴𝑆 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
21adantl 480 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴})
3 simpl 481 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑆 ran sigAlgebra)
4 abid 2706 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴)
5 eleq1a 2820 . . . . . . . . . . 11 (𝐴𝑆 → (𝑥 = 𝐴𝑥𝑆))
65ralimi 3072 . . . . . . . . . 10 (∀𝑘 ∈ ℕ 𝐴𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆))
7 r19.23v 3172 . . . . . . . . . 10 (∀𝑘 ∈ ℕ (𝑥 = 𝐴𝑥𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
86, 7sylib 217 . . . . . . . . 9 (∀𝑘 ∈ ℕ 𝐴𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴𝑥𝑆))
98imp 405 . . . . . . . 8 ((∀𝑘 ∈ ℕ 𝐴𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
109adantll 712 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥𝑆)
114, 10sylan2b 592 . . . . . 6 (((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥𝑆)
1211ralrimiva 3135 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
13 nfab1 2893 . . . . . 6 𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}
14 nfcv 2891 . . . . . 6 𝑥𝑆
1513, 14dfss3f 3968 . . . . 5 ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥𝑆)
1612, 15sylibr 233 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)
17 elpw2g 5347 . . . . 5 (𝑆 ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1817adantr 479 . . . 4 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆))
1916, 18mpbird 256 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆)
20 nnct 13987 . . . 4 ℕ ≼ ω
21 abrexct 32585 . . . 4 (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
2220, 21mp1i 13 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω)
23 sigaclcu 33869 . . 3 ((𝑆 ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
243, 19, 22, 23syl3anc 1368 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆)
252, 24eqeltrd 2825 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴𝑆) → 𝑘 ∈ ℕ 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {cab 2702  wral 3050  wrex 3059  wss 3944  𝒫 cpw 4604   cuni 4909   ciun 4997   class class class wbr 5149  ran crn 5679  ωcom 7871  cdom 8962  cn 12250  sigAlgebracsiga 33860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-card 9969  df-acn 9972  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-siga 33861
This theorem is referenced by:  sigaclfu2  33873  sigaclcu3  33874  measiun  33970
  Copyright terms: Public domain W3C validator