Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclcu2 | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under countable union - indexing on ℕ (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
sigaclcu2 | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4957 | . . 3 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 = ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) |
3 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | abid 2719 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ↔ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) | |
5 | eleq1a 2834 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑆 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
6 | 5 | ralimi 3086 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
7 | r19.23v 3207 | . . . . . . . . . 10 ⊢ (∀𝑘 ∈ ℕ (𝑥 = 𝐴 → 𝑥 ∈ 𝑆) ↔ (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) | |
8 | 6, 7 | sylib 217 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 → (∃𝑘 ∈ ℕ 𝑥 = 𝐴 → 𝑥 ∈ 𝑆)) |
9 | 8 | imp 406 | . . . . . . . 8 ⊢ ((∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆 ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
10 | 9 | adantll 710 | . . . . . . 7 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ ∃𝑘 ∈ ℕ 𝑥 = 𝐴) → 𝑥 ∈ 𝑆) |
11 | 4, 10 | sylan2b 593 | . . . . . 6 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}) → 𝑥 ∈ 𝑆) |
12 | 11 | ralrimiva 3107 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
13 | nfab1 2908 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} | |
14 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝑆 | |
15 | 13, 14 | dfss3f 3908 | . . . . 5 ⊢ ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆 ↔ ∀𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴}𝑥 ∈ 𝑆) |
16 | 12, 15 | sylibr 233 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆) |
17 | elpw2g 5263 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) | |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ({𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ↔ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ⊆ 𝑆)) |
19 | 16, 18 | mpbird 256 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆) |
20 | nnct 13629 | . . . 4 ⊢ ℕ ≼ ω | |
21 | abrexct 30953 | . . . 4 ⊢ (ℕ ≼ ω → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) | |
22 | 20, 21 | mp1i 13 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) |
23 | sigaclcu 31985 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝒫 𝑆 ∧ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ≼ ω) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) | |
24 | 3, 19, 22, 23 | syl3anc 1369 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ {𝑥 ∣ ∃𝑘 ∈ ℕ 𝑥 = 𝐴} ∈ 𝑆) |
25 | 2, 24 | eqeltrd 2839 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ 𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ∪ ciun 4921 class class class wbr 5070 ran crn 5581 ωcom 7687 ≼ cdom 8689 ℕcn 11903 sigAlgebracsiga 31976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-siga 31977 |
This theorem is referenced by: sigaclfu2 31989 sigaclcu3 31990 measiun 32086 |
Copyright terms: Public domain | W3C validator |