Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimconstlt1 Structured version   Visualization version   GIF version

Theorem pimconstlt1 44129
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimconstlt1.1 𝑥𝜑
pimconstlt1.2 (𝜑𝐵 ∈ ℝ)
pimconstlt1.3 𝐹 = (𝑥𝐴𝐵)
pimconstlt1.4 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
pimconstlt1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem pimconstlt1
StepHypRef Expression
1 ssrab2 4009 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ⊆ 𝐴)
3 pimconstlt1.1 . . . 4 𝑥𝜑
4 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 pimconstlt1.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
65a1i 11 . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐴𝐵))
7 pimconstlt1.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
87adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
96, 8fvmpt2d 6870 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
10 pimconstlt1.4 . . . . . . . . 9 (𝜑𝐵 < 𝐶)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 < 𝐶)
129, 11eqbrtrd 5092 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) < 𝐶)
134, 12jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝐶))
14 rabid 3304 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝐶))
1513, 14sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
1615ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶}))
173, 16ralrimi 3139 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
18 nfcv 2906 . . . 4 𝑥𝐴
19 nfrab1 3310 . . . 4 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝐶}
2018, 19dfss3f 3908 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
2117, 20sylibr 233 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
222, 21eqssd 3934 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  {crab 3067  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  cr 10801   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  smfconst  44172
  Copyright terms: Public domain W3C validator