| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt1 | Structured version Visualization version GIF version | ||
| Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pimconstlt1.1 | ⊢ Ⅎ𝑥𝜑 |
| pimconstlt1.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| pimconstlt1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| pimconstlt1.4 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| pimconstlt1 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4046 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴) |
| 3 | pimconstlt1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 5 | pimconstlt1.3 | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 7 | pimconstlt1.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 9 | 6, 8 | fvmpt2d 6984 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| 10 | pimconstlt1.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < 𝐶) |
| 12 | 9, 11 | eqbrtrd 5132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) < 𝐶) |
| 13 | 4, 12 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) |
| 14 | rabid 3430 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) | |
| 15 | 13, 14 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶})) |
| 17 | 3, 16 | ralrimi 3236 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
| 18 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 19 | nfrab1 3429 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} | |
| 20 | 18, 19 | dfss3f 3941 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
| 21 | 17, 20 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
| 22 | 2, 21 | eqssd 3967 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 ℝcr 11074 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: smfconst 46754 |
| Copyright terms: Public domain | W3C validator |