Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimconstlt1 Structured version   Visualization version   GIF version

Theorem pimconstlt1 45408
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimconstlt1.1 𝑥𝜑
pimconstlt1.2 (𝜑𝐵 ∈ ℝ)
pimconstlt1.3 𝐹 = (𝑥𝐴𝐵)
pimconstlt1.4 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
pimconstlt1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem pimconstlt1
StepHypRef Expression
1 ssrab2 4077 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ⊆ 𝐴)
3 pimconstlt1.1 . . . 4 𝑥𝜑
4 simpr 485 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 pimconstlt1.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
65a1i 11 . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐴𝐵))
7 pimconstlt1.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
87adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
96, 8fvmpt2d 7011 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
10 pimconstlt1.4 . . . . . . . . 9 (𝜑𝐵 < 𝐶)
1110adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 < 𝐶)
129, 11eqbrtrd 5170 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) < 𝐶)
134, 12jca 512 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝐶))
14 rabid 3452 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝐶))
1513, 14sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
1615ex 413 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶}))
173, 16ralrimi 3254 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
18 nfcv 2903 . . . 4 𝑥𝐴
19 nfrab1 3451 . . . 4 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝐶}
2018, 19dfss3f 3973 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
2117, 20sylibr 233 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
222, 21eqssd 3999 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wral 3061  {crab 3432  wss 3948   class class class wbr 5148  cmpt 5231  cfv 6543  cr 11108   < clt 11247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  smfconst  45455
  Copyright terms: Public domain W3C validator