Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimconstlt1 Structured version   Visualization version   GIF version

Theorem pimconstlt1 42973
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimconstlt1.1 𝑥𝜑
pimconstlt1.2 (𝜑𝐵 ∈ ℝ)
pimconstlt1.3 𝐹 = (𝑥𝐴𝐵)
pimconstlt1.4 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
pimconstlt1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem pimconstlt1
StepHypRef Expression
1 ssrab2 4054 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ⊆ 𝐴)
3 pimconstlt1.1 . . . 4 𝑥𝜑
4 simpr 487 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 pimconstlt1.3 . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
65a1i 11 . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐴𝐵))
7 pimconstlt1.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
87adantr 483 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
96, 8fvmpt2d 6774 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
10 pimconstlt1.4 . . . . . . . . 9 (𝜑𝐵 < 𝐶)
1110adantr 483 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 < 𝐶)
129, 11eqbrtrd 5079 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) < 𝐶)
134, 12jca 514 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝐶))
14 rabid 3377 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝐶))
1513, 14sylibr 236 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
1615ex 415 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶}))
173, 16ralrimi 3214 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
18 nfcv 2975 . . . 4 𝑥𝐴
19 nfrab1 3383 . . . 4 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝐶}
2018, 19dfss3f 3957 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
2117, 20sylibr 236 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶})
222, 21eqssd 3982 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wnf 1778  wcel 2108  wral 3136  {crab 3140  wss 3934   class class class wbr 5057  cmpt 5137  cfv 6348  cr 10528   < clt 10667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fv 6356
This theorem is referenced by:  smfconst  43016
  Copyright terms: Public domain W3C validator