![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt1 | Structured version Visualization version GIF version |
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimconstlt1.1 | ⊢ Ⅎ𝑥𝜑 |
pimconstlt1.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
pimconstlt1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
pimconstlt1.4 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
pimconstlt1 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4077 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴) |
3 | pimconstlt1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | pimconstlt1.3 | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
7 | pimconstlt1.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
8 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
9 | 6, 8 | fvmpt2d 7011 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
10 | pimconstlt1.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 < 𝐶) | |
11 | 10 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < 𝐶) |
12 | 9, 11 | eqbrtrd 5170 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) < 𝐶) |
13 | 4, 12 | jca 512 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) |
14 | rabid 3452 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) | |
15 | 13, 14 | sylibr 233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
16 | 15 | ex 413 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶})) |
17 | 3, 16 | ralrimi 3254 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
18 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
19 | nfrab1 3451 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} | |
20 | 18, 19 | dfss3f 3973 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
21 | 17, 20 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
22 | 2, 21 | eqssd 3999 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3061 {crab 3432 ⊆ wss 3948 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 ℝcr 11108 < clt 11247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: smfconst 45455 |
Copyright terms: Public domain | W3C validator |