![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt1 | Structured version Visualization version GIF version |
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimconstlt1.1 | ⊢ Ⅎ𝑥𝜑 |
pimconstlt1.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
pimconstlt1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
pimconstlt1.4 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
pimconstlt1 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4073 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴) |
3 | pimconstlt1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | pimconstlt1.3 | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
7 | pimconstlt1.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
8 | 7 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
9 | 6, 8 | fvmpt2d 7014 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
10 | pimconstlt1.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 < 𝐶) | |
11 | 10 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < 𝐶) |
12 | 9, 11 | eqbrtrd 5167 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) < 𝐶) |
13 | 4, 12 | jca 510 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) |
14 | rabid 3440 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) | |
15 | 13, 14 | sylibr 233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
16 | 15 | ex 411 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶})) |
17 | 3, 16 | ralrimi 3245 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
18 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
19 | nfrab1 3439 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} | |
20 | 18, 19 | dfss3f 3970 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
21 | 17, 20 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
22 | 2, 21 | eqssd 3996 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3051 {crab 3419 ⊆ wss 3946 class class class wbr 5145 ↦ cmpt 5228 ‘cfv 6546 ℝcr 11148 < clt 11289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fv 6554 |
This theorem is referenced by: smfconst 46406 |
Copyright terms: Public domain | W3C validator |