![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt1 | Structured version Visualization version GIF version |
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound larger than the constant, is the whole domain. First part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimconstlt1.1 | ⊢ Ⅎ𝑥𝜑 |
pimconstlt1.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
pimconstlt1.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
pimconstlt1.4 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
pimconstlt1 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4103 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ⊆ 𝐴) |
3 | pimconstlt1.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | pimconstlt1.3 | . . . . . . . . . 10 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
7 | pimconstlt1.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
9 | 6, 8 | fvmpt2d 7042 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
10 | pimconstlt1.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 < 𝐶) | |
11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < 𝐶) |
12 | 9, 11 | eqbrtrd 5188 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) < 𝐶) |
13 | 4, 12 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) |
14 | rabid 3465 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝐶)) | |
15 | 13, 14 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶})) |
17 | 3, 16 | ralrimi 3263 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
18 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
19 | nfrab1 3464 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} | |
20 | 18, 19 | dfss3f 4000 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
21 | 17, 20 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶}) |
22 | 2, 21 | eqssd 4026 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 ℝcr 11183 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: smfconst 46670 |
Copyright terms: Public domain | W3C validator |