MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem9 Structured version   Visualization version   GIF version

Theorem ackbij1lem9 9842
Description: Lemma for ackbij1 9852. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem9 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = ((𝐹𝐴) +o (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem9
StepHypRef Expression
1 elinel2 4110 . . . . . . . . 9 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
213ad2ant1 1135 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ Fin)
3 snfi 8721 . . . . . . . . . 10 {𝑦} ∈ Fin
4 elinel1 4109 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
54elpwid 4524 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
653ad2ant1 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ ω)
7 onfin2 8871 . . . . . . . . . . . . . 14 ω = (On ∩ Fin)
8 inss2 4144 . . . . . . . . . . . . . 14 (On ∩ Fin) ⊆ Fin
97, 8eqsstri 3935 . . . . . . . . . . . . 13 ω ⊆ Fin
106, 9sstrdi 3913 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ Fin)
1110sselda 3901 . . . . . . . . . . 11 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
12 pwfi 8856 . . . . . . . . . . 11 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1311, 12sylib 221 . . . . . . . . . 10 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → 𝒫 𝑦 ∈ Fin)
14 xpfi 8942 . . . . . . . . . 10 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
153, 13, 14sylancr 590 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1615ralrimiva 3105 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ∀𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
17 iunfi 8964 . . . . . . . 8 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
182, 16, 17syl2anc 587 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
19 ficardid 9578 . . . . . . 7 ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
21 elinel2 4110 . . . . . . . . 9 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
22213ad2ant2 1136 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ Fin)
23 elinel1 4109 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
2423elpwid 4524 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ⊆ ω)
25243ad2ant2 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ ω)
2625, 9sstrdi 3913 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ Fin)
2726sselda 3901 . . . . . . . . . . 11 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → 𝑦 ∈ Fin)
2827, 12sylib 221 . . . . . . . . . 10 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → 𝒫 𝑦 ∈ Fin)
293, 28, 14sylancr 590 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
3029ralrimiva 3105 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ∀𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
31 iunfi 8964 . . . . . . . 8 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
3222, 30, 31syl2anc 587 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
33 ficardid 9578 . . . . . . 7 ( 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
35 djuen 9783 . . . . . 6 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∧ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
3620, 34, 35syl2anc 587 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
37 djudisj 6030 . . . . . . . 8 ((𝐴𝐵) = ∅ → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅)
38373ad2ant3 1137 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅)
39 endjudisj 9782 . . . . . . 7 (( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
4018, 32, 38, 39syl3anc 1373 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
41 iunxun 5002 . . . . . 6 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦) = ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
4240, 41breqtrrdi 5095 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
43 entr 8680 . . . . 5 ((((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∧ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
4436, 42, 43syl2anc 587 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
45 carden2b 9583 . . . 4 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
4644, 45syl 17 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
47 ficardom 9577 . . . . 5 ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω)
4818, 47syl 17 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω)
49 ficardom 9577 . . . . 5 ( 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω)
5032, 49syl 17 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω)
51 nnadju 9811 . . . 4 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω ∧ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
5248, 50, 51syl2anc 587 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
5346, 52eqtr3d 2779 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
54 ackbij1lem6 9839 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
55543adant3 1134 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
56 ackbij.f . . . 4 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
5756ackbij1lem7 9840 . . 3 ((𝐴𝐵) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴𝐵)) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
5855, 57syl 17 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
5956ackbij1lem7 9840 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
6056ackbij1lem7 9840 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐵) = (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
6159, 60oveqan12d 7232 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) +o (𝐹𝐵)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
62613adant3 1134 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((𝐹𝐴) +o (𝐹𝐵)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
6353, 58, 623eqtr4d 2787 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = ((𝐹𝐴) +o (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  cun 3864  cin 3865  wss 3866  c0 4237  𝒫 cpw 4513  {csn 4541   ciun 4904   class class class wbr 5053  cmpt 5135   × cxp 5549  Oncon0 6213  cfv 6380  (class class class)co 7213  ωcom 7644   +o coa 8199  cen 8623  Fincfn 8626  cdju 9514  cardccrd 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555
This theorem is referenced by:  ackbij1lem12  9845  ackbij1lem13  9846  ackbij1lem14  9847  ackbij1lem16  9849  ackbij1lem18  9851
  Copyright terms: Public domain W3C validator