MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem9 Structured version   Visualization version   GIF version

Theorem ackbij1lem9 10267
Description: Lemma for ackbij1 10277. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem9 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = ((𝐹𝐴) +o (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem9
StepHypRef Expression
1 elinel2 4202 . . . . . . . . 9 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
213ad2ant1 1134 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ Fin)
3 snfi 9083 . . . . . . . . . 10 {𝑦} ∈ Fin
4 elinel1 4201 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
54elpwid 4609 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
653ad2ant1 1134 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ ω)
7 onfin2 9268 . . . . . . . . . . . . . 14 ω = (On ∩ Fin)
8 inss2 4238 . . . . . . . . . . . . . 14 (On ∩ Fin) ⊆ Fin
97, 8eqsstri 4030 . . . . . . . . . . . . 13 ω ⊆ Fin
106, 9sstrdi 3996 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ Fin)
1110sselda 3983 . . . . . . . . . . 11 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
12 pwfi 9357 . . . . . . . . . . 11 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1311, 12sylib 218 . . . . . . . . . 10 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → 𝒫 𝑦 ∈ Fin)
14 xpfi 9358 . . . . . . . . . 10 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
153, 13, 14sylancr 587 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐴) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1615ralrimiva 3146 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ∀𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
17 iunfi 9383 . . . . . . . 8 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
182, 16, 17syl2anc 584 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin)
19 ficardid 10002 . . . . . . 7 ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
21 elinel2 4202 . . . . . . . . 9 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
22213ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ Fin)
23 elinel1 4201 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
2423elpwid 4609 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ⊆ ω)
25243ad2ant2 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ ω)
2625, 9sstrdi 3996 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ Fin)
2726sselda 3983 . . . . . . . . . . 11 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → 𝑦 ∈ Fin)
2827, 12sylib 218 . . . . . . . . . 10 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → 𝒫 𝑦 ∈ Fin)
293, 28, 14sylancr 587 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) ∧ 𝑦𝐵) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
3029ralrimiva 3146 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ∀𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
31 iunfi 9383 . . . . . . . 8 ((𝐵 ∈ Fin ∧ ∀𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
3222, 30, 31syl2anc 584 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin)
33 ficardid 10002 . . . . . . 7 ( 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
35 djuen 10210 . . . . . 6 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∧ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
3620, 34, 35syl2anc 584 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
37 djudisj 6187 . . . . . . . 8 ((𝐴𝐵) = ∅ → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅)
38373ad2ant3 1136 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅)
39 endjudisj 10209 . . . . . . 7 (( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∩ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
4018, 32, 38, 39syl3anc 1373 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
41 iunxun 5094 . . . . . 6 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦) = ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∪ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))
4240, 41breqtrrdi 5185 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
43 entr 9046 . . . . 5 ((((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∧ ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ⊔ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
4436, 42, 43syl2anc 584 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦))
45 carden2b 10007 . . . 4 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))) ≈ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
4644, 45syl 17 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
47 ficardom 10001 . . . . 5 ( 𝑦𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω)
4818, 47syl 17 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω)
49 ficardom 10001 . . . . 5 ( 𝑦𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω)
5032, 49syl 17 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω)
51 nnadju 10238 . . . 4 (((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω ∧ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
5248, 50, 51syl2anc 584 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
5346, 52eqtr3d 2779 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
54 ackbij1lem6 10264 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
55543adant3 1133 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
56 ackbij.f . . . 4 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
5756ackbij1lem7 10265 . . 3 ((𝐴𝐵) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴𝐵)) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
5855, 57syl 17 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = (card‘ 𝑦 ∈ (𝐴𝐵)({𝑦} × 𝒫 𝑦)))
5956ackbij1lem7 10265 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
6056ackbij1lem7 10265 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐵) = (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦)))
6159, 60oveqan12d 7450 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) +o (𝐹𝐵)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
62613adant3 1133 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → ((𝐹𝐴) +o (𝐹𝐵)) = ((card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘ 𝑦𝐵 ({𝑦} × 𝒫 𝑦))))
6353, 58, 623eqtr4d 2787 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝐵) = ∅) → (𝐹‘(𝐴𝐵)) = ((𝐹𝐴) +o (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   ciun 4991   class class class wbr 5143  cmpt 5225   × cxp 5683  Oncon0 6384  cfv 6561  (class class class)co 7431  ωcom 7887   +o coa 8503  cen 8982  Fincfn 8985  cdju 9938  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979
This theorem is referenced by:  ackbij1lem12  10270  ackbij1lem13  10271  ackbij1lem14  10272  ackbij1lem16  10274  ackbij1lem18  10276
  Copyright terms: Public domain W3C validator