Proof of Theorem ackbij1lem9
| Step | Hyp | Ref
| Expression |
| 1 | | elinel2 4202 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → 𝐴 ∈
Fin) |
| 2 | 1 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ∈ Fin) |
| 3 | | snfi 9083 |
. . . . . . . . . 10
⊢ {𝑦} ∈ Fin |
| 4 | | elinel1 4201 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → 𝐴 ∈
𝒫 ω) |
| 5 | 4 | elpwid 4609 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → 𝐴 ⊆
ω) |
| 6 | 5 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ⊆ ω) |
| 7 | | onfin2 9268 |
. . . . . . . . . . . . . 14
⊢ ω =
(On ∩ Fin) |
| 8 | | inss2 4238 |
. . . . . . . . . . . . . 14
⊢ (On ∩
Fin) ⊆ Fin |
| 9 | 7, 8 | eqsstri 4030 |
. . . . . . . . . . . . 13
⊢ ω
⊆ Fin |
| 10 | 6, 9 | sstrdi 3996 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ⊆ Fin) |
| 11 | 10 | sselda 3983 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ Fin) |
| 12 | | pwfi 9357 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ Fin ↔ 𝒫
𝑦 ∈
Fin) |
| 13 | 11, 12 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐴) → 𝒫 𝑦 ∈ Fin) |
| 14 | | xpfi 9358 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ Fin ∧ 𝒫
𝑦 ∈ Fin) →
({𝑦} × 𝒫
𝑦) ∈
Fin) |
| 15 | 3, 13, 14 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐴) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 16 | 15 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∀𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 17 | | iunfi 9383 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 18 | 2, 16, 17 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 19 | | ficardid 10002 |
. . . . . . 7
⊢ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) |
| 21 | | elinel2 4202 |
. . . . . . . . 9
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → 𝐵 ∈
Fin) |
| 22 | 21 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ∈ Fin) |
| 23 | | elinel1 4201 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → 𝐵 ∈
𝒫 ω) |
| 24 | 23 | elpwid 4609 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → 𝐵 ⊆
ω) |
| 25 | 24 | 3ad2ant2 1135 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ⊆ ω) |
| 26 | 25, 9 | sstrdi 3996 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ⊆ Fin) |
| 27 | 26 | sselda 3983 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ Fin) |
| 28 | 27, 12 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐵) → 𝒫 𝑦 ∈ Fin) |
| 29 | 3, 28, 14 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐵) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 30 | 29 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∀𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 31 | | iunfi 9383 |
. . . . . . . 8
⊢ ((𝐵 ∈ Fin ∧ ∀𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 32 | 22, 30, 31 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 33 | | ficardid 10002 |
. . . . . . 7
⊢ (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) |
| 34 | 32, 33 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) |
| 35 | | djuen 10210 |
. . . . . 6
⊢
(((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∧ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ⊔ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 36 | 20, 34, 35 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ⊔ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 37 | | djudisj 6187 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∩ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) |
| 38 | 37 | 3ad2ant3 1136 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∩ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) |
| 39 | | endjudisj 10209 |
. . . . . . 7
⊢
((∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∩ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ⊔ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∪ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 40 | 18, 32, 38, 39 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ⊔ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∪ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 41 | | iunxun 5094 |
. . . . . 6
⊢ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦) = (∪
𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∪ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) |
| 42 | 40, 41 | breqtrrdi 5185 |
. . . . 5
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ⊔ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) |
| 43 | | entr 9046 |
. . . . 5
⊢
((((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ⊔ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∧ (∪
𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ⊔ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) |
| 44 | 36, 42, 43 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) |
| 45 | | carden2b 10007 |
. . . 4
⊢
(((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦) → (card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 46 | 44, 45 | syl 17 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) →
(card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 47 | | ficardom 10001 |
. . . . 5
⊢ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 48 | 18, 47 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 49 | | ficardom 10001 |
. . . . 5
⊢ (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 50 | 32, 49 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 51 | | nnadju 10238 |
. . . 4
⊢
(((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω ∧ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) →
(card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 52 | 48, 50, 51 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) →
(card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ⊔ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 53 | 46, 52 | eqtr3d 2779 |
. 2
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 54 | | ackbij1lem6 10264 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩
Fin)) |
| 55 | 54 | 3adant3 1133 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩
Fin)) |
| 56 | | ackbij.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| 57 | 56 | ackbij1lem7 10265 |
. . 3
⊢ ((𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)
→ (𝐹‘(𝐴 ∪ 𝐵)) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 58 | 55, 57 | syl 17 |
. 2
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹‘(𝐴 ∪ 𝐵)) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 59 | 56 | ackbij1lem7 10265 |
. . . 4
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
| 60 | 56 | ackbij1lem7 10265 |
. . . 4
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → (𝐹‘𝐵) = (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 61 | 59, 60 | oveqan12d 7450 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin)) → ((𝐹‘𝐴) +o (𝐹‘𝐵)) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 62 | 61 | 3adant3 1133 |
. 2
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹‘𝐴) +o (𝐹‘𝐵)) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +o (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 63 | 53, 58, 62 | 3eqtr4d 2787 |
1
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹‘(𝐴 ∪ 𝐵)) = ((𝐹‘𝐴) +o (𝐹‘𝐵))) |