MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcossOLD Structured version   Visualization version   GIF version

Theorem dmcossOLD 5922
Description: Obsolete version of dmcosseq 5924 as of 31-Dec-2025. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dmcossOLD dom (𝐴𝐵) ⊆ dom 𝐵

Proof of Theorem dmcossOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 2155 . . . 4 𝑦𝑦 𝑥𝐵𝑦
2 exsimpl 1869 . . . . 5 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) → ∃𝑧 𝑥𝐵𝑧)
3 vex 3442 . . . . . 6 𝑥 ∈ V
4 vex 3442 . . . . . 6 𝑦 ∈ V
53, 4opelco 5818 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
6 breq2 5099 . . . . . 6 (𝑦 = 𝑧 → (𝑥𝐵𝑦𝑥𝐵𝑧))
76cbvexvw 2038 . . . . 5 (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑧 𝑥𝐵𝑧)
82, 5, 73imtr4i 292 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
91, 8exlimi 2222 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) → ∃𝑦 𝑥𝐵𝑦)
103eldm2 5848 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
113eldm 5847 . . 3 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
129, 10, 113imtr4i 292 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ dom 𝐵)
1312ssriv 3935 1 dom (𝐴𝐵) ⊆ dom 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1780  wcel 2113  wss 3899  cop 4583   class class class wbr 5095  dom cdm 5621  ccom 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-co 5630  df-dm 5631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator