Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmuncnvepres Structured version   Visualization version   GIF version

Theorem dmuncnvepres 38425
Description: Domain of the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
dmuncnvepres dom ((𝑅 E ) ↾ 𝐴) = (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅})))

Proof of Theorem dmuncnvepres
StepHypRef Expression
1 dmres 5960 . 2 dom ((𝑅 E ) ↾ 𝐴) = (𝐴 ∩ dom (𝑅 E ))
2 dmun 5849 . . . 4 dom (𝑅 E ) = (dom 𝑅 ∪ dom E )
3 dmcnvep 38422 . . . . 5 dom E = (V ∖ {∅})
43uneq2i 4112 . . . 4 (dom 𝑅 ∪ dom E ) = (dom 𝑅 ∪ (V ∖ {∅}))
52, 4eqtri 2754 . . 3 dom (𝑅 E ) = (dom 𝑅 ∪ (V ∖ {∅}))
65ineq2i 4164 . 2 (𝐴 ∩ dom (𝑅 E )) = (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅})))
71, 6eqtri 2754 1 dom ((𝑅 E ) ↾ 𝐴) = (𝐴 ∩ (dom 𝑅 ∪ (V ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  cun 3895  cin 3896  c0 4280  {csn 4573   E cep 5513  ccnv 5613  dom cdm 5614  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-res 5626
This theorem is referenced by:  dmxrnuncnvepres  38426  dfadjliftmap2  38481
  Copyright terms: Public domain W3C validator