Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmxrnuncnvepres Structured version   Visualization version   GIF version

Theorem dmxrnuncnvepres 38426
Description: Domain of the range Cartesian product with the converse epsilon relation combined with the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
dmxrnuncnvepres dom (((𝑅 E ) ∪ E ) ↾ 𝐴) = (𝐴 ∖ {∅})

Proof of Theorem dmxrnuncnvepres
StepHypRef Expression
1 dmuncnvepres 38425 . 2 dom (((𝑅 E ) ∪ E ) ↾ 𝐴) = (𝐴 ∩ (dom (𝑅 E ) ∪ (V ∖ {∅})))
2 dmxrncnvep 38423 . . . . 5 dom (𝑅 E ) = (dom 𝑅 ∖ {∅})
32uneq1i 4111 . . . 4 (dom (𝑅 E ) ∪ (V ∖ {∅})) = ((dom 𝑅 ∖ {∅}) ∪ (V ∖ {∅}))
4 difundir 4238 . . . 4 ((dom 𝑅 ∪ V) ∖ {∅}) = ((dom 𝑅 ∖ {∅}) ∪ (V ∖ {∅}))
5 unv 4346 . . . . 5 (dom 𝑅 ∪ V) = V
65difeq1i 4069 . . . 4 ((dom 𝑅 ∪ V) ∖ {∅}) = (V ∖ {∅})
73, 4, 63eqtr2i 2760 . . 3 (dom (𝑅 E ) ∪ (V ∖ {∅})) = (V ∖ {∅})
87ineq2i 4164 . 2 (𝐴 ∩ (dom (𝑅 E ) ∪ (V ∖ {∅}))) = (𝐴 ∩ (V ∖ {∅}))
9 invdif 4226 . 2 (𝐴 ∩ (V ∖ {∅})) = (𝐴 ∖ {∅})
101, 8, 93eqtri 2758 1 dom (((𝑅 E ) ∪ E ) ↾ 𝐴) = (𝐴 ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  cun 3895  cin 3896  c0 4280  {csn 4573   E cep 5513  ccnv 5613  dom cdm 5614  cres 5616  cxrn 38224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-oprab 7350  df-1st 7921  df-2nd 7922  df-xrn 38414
This theorem is referenced by:  blockadjliftmap  38482
  Copyright terms: Public domain W3C validator