| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcnvep | Structured version Visualization version GIF version | ||
| Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) (Revised by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmcnvep | ⊢ dom ◡ E = (V ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5621 | . 2 ⊢ dom ◡ E = {𝑥 ∣ ∃𝑦 𝑥◡ E 𝑦} | |
| 2 | brcnvep 38300 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | 2 | elv 3441 | . . . 4 ⊢ (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥) |
| 4 | 3 | exbii 1849 | . . 3 ⊢ (∃𝑦 𝑥◡ E 𝑦 ↔ ∃𝑦 𝑦 ∈ 𝑥) |
| 5 | 4 | abbii 2798 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥◡ E 𝑦} = {𝑥 ∣ ∃𝑦 𝑦 ∈ 𝑥} |
| 6 | df-sn 4572 | . . . 4 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 7 | 6 | difeq2i 4068 | . . 3 ⊢ (V ∖ {∅}) = (V ∖ {𝑥 ∣ 𝑥 = ∅}) |
| 8 | notab 4259 | . . 3 ⊢ {𝑥 ∣ ¬ 𝑥 = ∅} = (V ∖ {𝑥 ∣ 𝑥 = ∅}) | |
| 9 | neq0 4297 | . . . 4 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
| 10 | 9 | abbii 2798 | . . 3 ⊢ {𝑥 ∣ ¬ 𝑥 = ∅} = {𝑥 ∣ ∃𝑦 𝑦 ∈ 𝑥} |
| 11 | 7, 8, 10 | 3eqtr2ri 2761 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 ∈ 𝑥} = (V ∖ {∅}) |
| 12 | 1, 5, 11 | 3eqtri 2758 | 1 ⊢ dom ◡ E = (V ∖ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∖ cdif 3894 ∅c0 4278 {csn 4571 class class class wbr 5086 E cep 5510 ◡ccnv 5610 dom cdm 5611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 |
| This theorem is referenced by: dmxrncnvep 38408 |
| Copyright terms: Public domain | W3C validator |