Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcnvep Structured version   Visualization version   GIF version

Theorem dmcnvep 38485
Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) (Revised by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
dmcnvep dom E = (V ∖ {∅})

Proof of Theorem dmcnvep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 5631 . 2 dom E = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦}
2 brcnvep 38375 . . . . 5 (𝑥 ∈ V → (𝑥 E 𝑦𝑦𝑥))
32elv 3442 . . . 4 (𝑥 E 𝑦𝑦𝑥)
43exbii 1849 . . 3 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑦𝑥)
54abbii 2800 . 2 {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} = {𝑥 ∣ ∃𝑦 𝑦𝑥}
6 df-sn 4578 . . . 4 {∅} = {𝑥𝑥 = ∅}
76difeq2i 4072 . . 3 (V ∖ {∅}) = (V ∖ {𝑥𝑥 = ∅})
8 notab 4263 . . 3 {𝑥 ∣ ¬ 𝑥 = ∅} = (V ∖ {𝑥𝑥 = ∅})
9 neq0 4301 . . . 4 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
109abbii 2800 . . 3 {𝑥 ∣ ¬ 𝑥 = ∅} = {𝑥 ∣ ∃𝑦 𝑦𝑥}
117, 8, 103eqtr2ri 2763 . 2 {𝑥 ∣ ∃𝑦 𝑦𝑥} = (V ∖ {∅})
121, 5, 113eqtri 2760 1 dom E = (V ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wex 1780  wcel 2113  {cab 2711  Vcvv 3437  cdif 3895  c0 4282  {csn 4577   class class class wbr 5095   E cep 5520  ccnv 5620  dom cdm 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631
This theorem is referenced by:  dmxrncnvep  38486  dmcnvepres  38487  dmuncnvepres  38488  dfsucmap3  38549
  Copyright terms: Public domain W3C validator