| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcnvep | Structured version Visualization version GIF version | ||
| Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) (Revised by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmcnvep | ⊢ dom ◡ E = (V ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5641 | . 2 ⊢ dom ◡ E = {𝑥 ∣ ∃𝑦 𝑥◡ E 𝑦} | |
| 2 | brcnvep 38227 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | 2 | elv 3449 | . . . 4 ⊢ (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝑥◡ E 𝑦 ↔ ∃𝑦 𝑦 ∈ 𝑥) |
| 5 | 4 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥◡ E 𝑦} = {𝑥 ∣ ∃𝑦 𝑦 ∈ 𝑥} |
| 6 | df-sn 4586 | . . . 4 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 7 | 6 | difeq2i 4082 | . . 3 ⊢ (V ∖ {∅}) = (V ∖ {𝑥 ∣ 𝑥 = ∅}) |
| 8 | notab 4273 | . . 3 ⊢ {𝑥 ∣ ¬ 𝑥 = ∅} = (V ∖ {𝑥 ∣ 𝑥 = ∅}) | |
| 9 | neq0 4311 | . . . 4 ⊢ (¬ 𝑥 = ∅ ↔ ∃𝑦 𝑦 ∈ 𝑥) | |
| 10 | 9 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ ¬ 𝑥 = ∅} = {𝑥 ∣ ∃𝑦 𝑦 ∈ 𝑥} |
| 11 | 7, 8, 10 | 3eqtr2ri 2759 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 ∈ 𝑥} = (V ∖ {∅}) |
| 12 | 1, 5, 11 | 3eqtri 2756 | 1 ⊢ dom ◡ E = (V ∖ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 Vcvv 3444 ∖ cdif 3908 ∅c0 4292 {csn 4585 class class class wbr 5102 E cep 5530 ◡ccnv 5630 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 |
| This theorem is referenced by: dmxrncnvep 38335 |
| Copyright terms: Public domain | W3C validator |