Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcnvep Structured version   Visualization version   GIF version

Theorem dmcnvep 38356
Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) (Revised by Peter Mazsa, 23-Nov-2025.)
Assertion
Ref Expression
dmcnvep dom E = (V ∖ {∅})

Proof of Theorem dmcnvep
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 5650 . 2 dom E = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦}
2 brcnvep 38249 . . . . 5 (𝑥 ∈ V → (𝑥 E 𝑦𝑦𝑥))
32elv 3455 . . . 4 (𝑥 E 𝑦𝑦𝑥)
43exbii 1848 . . 3 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑦𝑥)
54abbii 2797 . 2 {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} = {𝑥 ∣ ∃𝑦 𝑦𝑥}
6 df-sn 4592 . . . 4 {∅} = {𝑥𝑥 = ∅}
76difeq2i 4088 . . 3 (V ∖ {∅}) = (V ∖ {𝑥𝑥 = ∅})
8 notab 4279 . . 3 {𝑥 ∣ ¬ 𝑥 = ∅} = (V ∖ {𝑥𝑥 = ∅})
9 neq0 4317 . . . 4 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
109abbii 2797 . . 3 {𝑥 ∣ ¬ 𝑥 = ∅} = {𝑥 ∣ ∃𝑦 𝑦𝑥}
117, 8, 103eqtr2ri 2760 . 2 {𝑥 ∣ ∃𝑦 𝑦𝑥} = (V ∖ {∅})
121, 5, 113eqtri 2757 1 dom E = (V ∖ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wex 1779  wcel 2109  {cab 2708  Vcvv 3450  cdif 3913  c0 4298  {csn 4591   class class class wbr 5109   E cep 5539  ccnv 5639  dom cdm 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-eprel 5540  df-xp 5646  df-rel 5647  df-cnv 5648  df-dm 5650
This theorem is referenced by:  dmxrncnvep  38357
  Copyright terms: Public domain W3C validator